Image Processing for Laser Impact Detection in Shooting Simulators

dc.creatorGarcía Torres, José Antonio
dc.creatorGuzmán Pérez, Daniel
dc.creatorRincón Morantes, Jhon Fredy
dc.creatorMolina Martínez, Daniel Felipe
dc.creatorGarcía Rodríguez, Cristian Camilo
dc.creatorZamudio Palacios, Jhonnatan Eduardo
dc.date2025-03-31
dc.date.accessioned2025-10-01T23:53:15Z
dc.descriptionSimulation systems play a crucial role in firearms training by offering advantages such as the progressive improvement of shooting skills, reduced logistical costs, ammunition savings, and decreased need for personnel deployment to shooting ranges. A common feature of current systems is the use of wired communication between components, which ensures stability but introduces latency in data transmission. Moreover, wired setups limit their use in outdoor environments due to the lack of access to a power source. This study developed an image-processing-based method to replace live ammunition with a laser-emitting device. The methodology was structured in four phases: (1) system requirements analysis, (2) hardware and software development, (3) system integration with a real firearm, and (4) functional testing in both controlled and open environments. The system incorporates an automatic calibration mechanism that adapts to ambient lighting to ensure accuracy. When the trigger is pulled, the laser activates and projects onto an LCD screen; a camera captures the impact, and an integrated system detects the (x, y) coordinates. As a result, the prototype achieved an accuracy of 95.4% with latency under 80 ms. In conclusion, a portable, wireless system was designed, adaptable to various lighting conditions, consisting of 10 lanes with components specifically designed to integrate with a real firearm—offering a versatile and efficient alternative for training purposes.en-US
dc.descriptionLos sistemas de simulación desempeñan un papel crucial en el entrenamiento de tiro, al ofrecer ventajas como la mejora progresiva de las habilidades del tirador, reducción de costos logísticos, ahorro de munición y menor necesidad de despliegue de personal a los polígonos de tiro. Un rasgo común en los sistemas actuales es el uso de comunicación por cable entre componentes, lo cual proporciona estabilidad, pero introduce latencia en la transmisión de datos. Además, las configuraciones cableadas limitan su uso en entornos exteriores por la falta de acceso a una fuente de energía. Este estudio desarrolló un método basado en procesamiento de imágenes para reemplazar la munición real por un dispositivo emisor láser. La metodología se estructuró en cuatro fases: (1) análisis de requisitos del sistema, (2) desarrollo de hardware y software, (3) integración del sistema con un arma de fuego real y (4) pruebas funcionales en ambientes controlados y abiertos. El sistema incorpora un mecanismo de calibración automática que se adapta a la iluminación ambiental para garantizar precisión. Al accionar el gatillo, el láser se activa y proyecta sobre una pantalla LCD; una cámara captura el impacto y un sistema integrado detecta las coordenadas (x, y). Como resultado, el prototipo alcanzó una precisión del 95.4 %, con una latencia inferior a 80 ms. En conclusión, se diseñó un sistema portátil, inalámbrico y adaptable a distintas condiciones de luz, compuesto por 10 pistas con componentes diseñados para integrarse con un arma de fuego real, como alternativa versátil y eficiente para el entrenamiento.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3220
dc.identifier10.22430/22565337.3220
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7925
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3220/3627
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3220/3755
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3220/3756
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3220/3757
dc.relation/*ref*/J. A. Granados Ruiz, J. R. Pinzón Fontecha, “Modelo de evaluación para los niveles de instrucción de soldados en los batallones de instrucción y entrenamiento,” Tesis de grado, Escuela Superior de Guerra General Rafael Reyes Prieto, Bogotá, Colombia, 2010. [Online]. Available: https://www.esdegrepositorio.edu.co/handle/20.500.14205/2882
dc.relation/*ref*/J. S. Castellanos Masmela, and C. A. Martínez Puentes, Propuesta de implementación polígono para cursos de combate en el centro internacional de entrenamiento anfibio Santiago de Tolú, Sucre: Escuela de Formación de Infantería de Marina, 2023. https://mindefensa.primo.exlibrisgroup.com/discovery/delivery/57MDN_INST:MDN/1237542240007231
dc.relation/*ref*/Ejército Nacional de Colombia, “Plan estratégico de transformación ejército del futuro 2042,” ejercito.mil.co Accessed: Feb. 11, 2024. [Online]. Available: https://www.ejercito.mil.co/
dc.relation/*ref*/G. H. Acosta Pedreros, and S. A. Guzman Jaimes, “Pertinencia de la implementación de las aulas de entrenamiento táctico simulado para los batallones de instrucción y entrenamiento,” Tesis de grado, Escuela Superior de Guerra General Rafael Reyes Prieto, Bogotá, Colombia, 2013. [Online]. Available: https://esdegrepositorio.edu.co/handle/20.500.14205/3302
dc.relation/*ref*/Arma de fuego adaptada para un simulador de tiro que permite obtener una experiencia real mediante la simulación de retroceso, by I. D. Chavarro Castañeda et al., (2020, Apr 13), Patent NC2018/0010559, [Online]. Available: https://sipi.sic.gov.co/sipi/Extra/IP/Mutual/Browse.aspx?sid=638779918406392000
dc.relation/*ref*/P. J. Rojas Guevara, “Doctrina Damasco: eje articulador de la segunda gran reforma del Ejército Nacional de Colombia,” Rev. cient. Gen. José María Córdova., vol. 15, no. 19, p. 95, Jan. 2017. https://doi.org/10.21830/19006586.78
dc.relation/*ref*/Beamshot, “Multifution Laser Aiming System, Los Ángeles,” beamshot.com. Accessed: Feb. 11, 2024. [Online]. Available: 2024. https://www.beamshot.com/multifunction-laser-aiming-system.htm
dc.relation/*ref*/A. Sudiarno et al., “Analysis of human performance and potential application of virtual reality (VR) shooting games as a shooting training simulator for military personnel,” IJTech, vol. 15, no. 1, p. 87, 2024. https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=20869614&AN=175217133&h=tiihH%2FFLqrB29y2tKVyneOoU5Fzty6eEfKXmTvi%2BvxW1UHfayAqzzsDvPaLMxqGFn2A8EBJNzCr%2BPSUIwTJftw%3D%3D&crl=c
dc.relation/*ref*/L. Wei, H. Zhou, and S. Nahavandi, “Haptically enabled simulation system for firearm shooting training,” Virtual Real., vol. 23, no. 3, pp. 217–228, Sep. 2019. https://doi.org/10.1007/s10055-018-0349-0
dc.relation/*ref*/E. Ugur, B. Ozlem Konukseven, M. Ergen, M. E. Aksoy, and S. Ilgaz Yoner, “Is the brightness- contrast level of virtual reality videos significant for visually induced motion sickness? Experimental real-time biosensor and self-report analysis,” Frontiers in Virtual Reality, vol. 5, Aug. 2024. https://doi.org/10.3389/frvir.2024.1435049
dc.relation/*ref*/A. T. Biggs, A. E. Jensen, and K. R. Kelly, “Heart rate of fire: exploring direct implementation of physiological measurements in realistic shoot/don’t-shoot simulations,” Front. Sports Act. Living., vol. 6, p. 1444655, Aug. 2024. https://doi.org/10.3389/fspor.2024.1444655
dc.relation/*ref*/D. Bogatinov, P. Lameski, V. Trajkovik, and K. M. Trendova, “Firearms training simulator based on low cost motion tracking sensor,” Multimed. Tools Appl., vol. 76, no. 1, pp. 1403–1418, Jan. 2017. https://doi.org/10.1007/s11042-015-3118-z
dc.relation/*ref*/A. Fedaravičius, K. Pilkauskas, E. Slizys, and A. Survila, “Research and development of training pistols for laser shooting simulation system,” Def. Technol., vol. 16, no. 3, pp. 530–534, Jun. 2020. https://doi.org/10.1016/j.dt.2019.06.018
dc.relation/*ref*/A. Soetedjo, A. Mahmudi, M. Ashari, and Y. I. Nakhoda, “Detecting Laser Spot In Shooting Simulator Using An Embedded Camera,” International Journal on Smart Sensing and Intelligent Systems, vol. 7, no.1, pp. 1-19, Mar. 2014. https://eprints.itn.ac.id/5304/
dc.relation/*ref*/Z. Wang, Y.-M. M. Hu, and F. Xie, “Optical fiber simulator for shooting and aiming practices,” in Proceedings Volume 2895, Fiber Optic Sensors V, Beijing, China,1996. https://doi.org/10.1117/12.252196
dc.relation/*ref*/Special Pie, “L17Pro Laser Shooting Simulator,” special314.com. Accessed: Feb. 11, 2024. [Online]. Available: https://www.special314.com/sp/85.html?admin_id=1
dc.relation/*ref*/K. Teguh Martono, O. Dwi Nurhayati, and C. Galuhputri Wulwida, “Augmented reality–based shooting simulator system to analysis of virtual distance to real distance using unity 3D,” Journal of Theoretical and Applied Information Technology, vol. 95, no. 23. Dec. 2017. https://www.jatit.org/volumes/Vol95No23/2Vol95No23.pdf
dc.relation/*ref*/A. Buga et al., “The VirTra V-100 is a test-retest reliable shooting simulator for measuring accuracy/precision, decision-making, and reaction time in civilians, police/SWAT, and military personnel,” J. Strength Cond. Res., vol. 38, no. 10, pp. 1714-1723, Oct. 2024. https://journals.lww.com/nsca-jscr/abstract/2024/10000/the_virtra_v_100_is_a_test_retest_reliable.3.aspx
dc.relation/*ref*/M. Lesaffre, N. Verrier, and M. Gross, “Noise and signal scaling factors in digital holography in weak illumination: relationship with shot noise,” Appl. Opt., vol. 52, no. 1, pp. A81-91, 2013. https://doi.org/10.1364/AO.52.000A81
dc.relation/*ref*/M. Maciejewski, M. Piszczek, M. Pomianek, and N. Pałka, “Optoelectronic tracking system for shooting simulator - tests in a virtual reality application,” Photonics Lett. Pol., vol. 12, no. 2, p. 61, Jul. 2020. https://doi.org/10.4302/plp.v12i2.1025
dc.relation/*ref*/E. dos S. Soares, S. T. Corazza, A. C. Piovesan, R. P. de Azevedo, and S. J. L. Vasconcellos, “Creation, validation, and reliability of a shooting simulator instrument for reaction time evaluation,” Motriz, vol. 22, no. 4, pp. 277–282, Dec. 2016. https://doi.org/10.1590/S1980-6574201600040010
dc.relation/*ref*/A. Shahal, W. Hemmerich, and H. Hecht, “Brightness and contrast do not affect visually induced motion sickness in a passively-flown fixed-base flight simulator,” Displays, vol. 44, pp. 5–14, Sep. 2016. https://doi.org/10.1016/j.displa.2016.05.007
dc.relation/*ref*/S. van der Walt et al., “scikit-image: image processing in Python,” PeerJ, vol. 2, p. e453, Jun. 2014. https://doi.org/10.7717/peerj.453
dc.relation/*ref*/R. Serrano Oller, “DSLR Project: Control de càmeres DSLR en temps real mitjançant dispositius tipus RaspberryPi,” Tesi de grau, Universitat De Barcelona, Barcelona, España, 2014. https://diposit.ub.edu/dspace/handle/2445/61663
dc.relation/*ref*/T. Pierre-Jean, and P.Mabacker, “Building our First Poky Image for the Raspberry Pi,” in Yocto for Raspberry Pi, Birmingham, Inglaterra: Packt Publishing, 2016, pp. 27-28. https://books.google.com.co/books?hl=es&lr=&id=Bf5vDQAAQBAJ&oi=fnd&pg=PP1&dq=P.-J.+Texier+y+P.+Mabacker,+Yocto+for+Raspberry+Pi+:+Create+Unique+and+Amazing+Projects+by+Using+the+Powerful+Combination+of+Yocto+and+Raspberry+Pi,+Birmingham,+&ots=jlqeoMHBY2&sig=tvVea30YfGWdAeil9VsrkYvAENo&redir_esc=y#v=onepage&q&f=false
dc.relation/*ref*/Intel. OpenCV - Open Computer Vision Library. (1999). OpenCV. Accessed: Feb. 11, 2024. [Online]. Available: https://docs.opencv.org/2.4/index.html.
dc.relation/*ref*/P. A. Laplante, “Software Engineering: An Overview,” in Software Engineering for Image Processing Systems. Boca Ratón, FL, USA: CRC Press, 2003, ch. 1, pp.1-20. https://doi.org/10.1201/9780203496107
dc.relation/*ref*/Gechic, “Perfect Match for Human Machine Interface,” icitouchtech.com. Accessed: Feb. 11, 2024. [Online]. Available: 2024. https://www.icitouchtech.com/gechic-t151a-touch-monitor-15-inch
dc.relation/*ref*/J. Weng, P. Cohen, and M. Herniou, “Camera calibration with distortion models and accuracy evaluation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 14, no. 10, pp. 965-980, Oct. 1992. https://doi.org/10.1109/34.159901
dc.relation/*ref*/T. Grant, A. Rohou, and N. Grigorieff, “cisTEM, user-friendly software for single-particle image processing,” Elife, vol. 7, p. e35383, Mar. 2018. https://doi.org/10.7554/eLife.35383
dc.relation/*ref*/A. Baranski et al., “MAUI (MBI Analysis User Interface)-An image processing pipeline for Multiplexed Mass Based Imaging,” PLoS Comput. Biol., vol. 17, no. 4, p. e1008887, 2021. https://doi.org/10.1371/journal.pcbi.1008887
dc.relation/*ref*/S. Bash, B. Johnson, W. Gibbs, T. Zhang, A. Shankaranarayanan, and L. N. Tanenbaum, “Deep learning image processing enables 40% faster spinal MR scans which match or exceed quality of standard of care : A prospective multicenter multireader study: A prospective multicenter multireader study,” Clin. Neuroradiol., vol. 32, no. 1, pp. 197–203, 2022. https://doi.org/10.1007/s00062-021-01121-2
dc.relation/*ref*/T. Pietzsch, S. Preibisch, P. Tomancák, and S. Saalfeld, “ImgLib2--generic image processing in Java,” Bioinformatics, vol. 28, no. 22, pp. 3009–3011, Nov. 2012. https://doi.org/10.1093/bioinformatics/bts543
dc.relation/*ref*/Ejército Nacional de Colombia, “Dirección de Aplicación de Normas de Transparencia del Ejército,” ejercito.mil.co. Accessed: Feb. 11, 2024. [Online]. Available: https://www.ejercito.mil.co/direccion-de-aplicacion-de-normas-de-transparencia-del-ejercito/
dc.relation/*ref*/Z. Zhang, Y. Liu, and W.-H. Peng, “Side information-driven image coding for hybrid machine–human vision,” EURASIP J. Image Video Process., vol. 3, no. 1, Jan. 2025.https://doi.org/10.1186/s13640-024-00661-0
dc.relation/*ref*/C. G. Harris, and M. J. Stephens, “A Combined Corner and Edge Detector,” in Proceedings of the Alvey Vision Conference, 1988, pp. 23.1-23.6. https://www.semanticscholar.org/paper/A-Combined-Corner-and-Edge-Detector-Harris-Stephens/6818668fb895d95861a2eb9673ddc3a41e27b3b3
dc.relation/*ref*/A. Pál, «fitsh– a software package for image processing,» Monthly Notices of the Royal Astronomical Society, vol. 421, p. 1825–1837, 2012. https://doi.org/10.1111/j.1365-2966.2011.19813.x
dc.relation/*ref*/P. Hajder, and Ł. Rauch, “Moving multiscale modelling to the edge: Benchmarking and load optimization for cellular automata on low power microcomputers,” Processes, vol. 9, no. 12, p. 2225, 2021. https://doi.org/10.3390/pr9122225
dc.relation/*ref*/R. B. Marks, I. C. Gifford, and B. O'Hara, “Standards in IEEE 802 unleash the wireless Internet,” in IEEE Microwave Magazine, vol. 2, no. 2, pp. 46-56, Jun. 2001. https://doi.org/10.1109/6668.924918
dc.relation/*ref*/Y. Amri, and M. A. Setiawan, “Improving Smart Home Concept with the Internet of Things Concept Using RaspberryPi and NodeMCU,” in IOP Conference Series. Materials Science and Engineering, Philadelphia, Pennsylvania, USA, 2018, p. 012021.https://iopscience.iop.org/article/10.1088/1757-899X/325/1/012021/pdf
dc.relation/*ref*/E. Gamess, and S. Hernandez, “Performance evaluation of different raspberry pi models for a broad spectrum of interests,” Int. J. Adv. Comput. Sci. Appl., vol. 13, no. 2, May. 2022. http://dx.doi.org/10.14569/IJACSA.2022.0130295
dc.relation/*ref*/R. Ildar, “RaspberryPI for mosquito neutralization by power laser,” arXiv [cs.CV], 2021. https://doi.org/10.48550/arXiv.2105.14190
dc.relation/*ref*/M. Lukitasari, W. I. Windarti, E. P. L. Fatma, T. Suharsono, and D. A. Nugroho, “The efficacy of Raspberry Pi-based automatic voice message education on knowledge level and prevention behavior of high-risk population,” Healthc. Low Resour. Settings, vol. 11, no. s1, 2023. https://doi.org/10.4081/hls.2023.11178
dc.relation/*ref*/R. Vilches Pons, “Red de sensores pervasiva para el bienestar basada en RaspberryPi,” Tesi de grau, UPC Universitat Politècnica de Catalunya, Barcelona, España, 2013. https://upcommons.upc.edu/handle/2099.1/18780
dc.relation/*ref*/O. Marzuqi, A. Virgono, and R. M. Negara, “Implementation model architecture software defined network using raspberry Pi: a review paper,” TELKOMNIKA, vol. 17, no. 3, p. 1136, 2019. https://telkomnika.uad.ac.id/index.php/TELKOMNIKA/article/view/8859
dc.relation/*ref*/I. Rakhmatulin, and S. Volkl, “Brain-Computer-Interface controlled robot via RaspberryPi and PiEEG,” arXiv [cs.RO], Feb. 2022. https://arxiv.org/abs/2202.01936
dc.relation/*ref*/S. Merugu, D. N. Sudha, T. K. Juluru, R. Rao, and S. K. Reddy Ravula, “Raspberry Pi based Intelligent Classroom Information and Management System using LBP Method,” in IOP Conference Series. Materials Science and Engineering, Warangal, India, 2020., p. 032035.https://doi.org/10.1088/1757-899X/981/3/032035
dc.relation/*ref*/F. Morales, L. Bernal, G. Pereira, S. Pérez-Buitrago, M. Kammer, and D. H. Stalder, “PytuTester: RaspberryPi open-source ventilator tester,” HardwareX, vol. 12, p. e00334, Jun. 2022. https://doi.org/10.1016/j.ohx.2022.e00334
dc.relation/*ref*/P. Lanari et al., “XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry,” Comput. Geosci., vol. 62, pp. 227–240, Jan. 2014. https://doi.org/10.1016/j.cageo.2013.08.010
dc.relation/*ref*/L. C. Ngugi, M. Abelwahab, and M. Abo-Zahhad, “Recent advances in image processing techniques for automated leaf pest and disease recognition – A review,” Inf. Process. Agric., vol. 8, no. 1, pp. 27–51, Mar. 2021. https://doi.org/10.1016/j.inpa.2020.04.004
dc.relation/*ref*/M. G. Selvaraj, M. Valderrama, D. Guzman, M. Valencia, H. Ruiz, and A. Acharjee, “Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava (Manihot esculenta Crantz),” Plant Methods, vol. 16, no. 1, p. 87, Jun. 2020. https://doi.org/10.1186/s13007-020-00625-1
dc.relation/*ref*/C. A. Gomez Gonzalez et al., “VIP: Vortex image processing package for high-contrast direct imaging,” Astron. J., vol. 154, no. 1, p. 7, Jun. 2017. https://iopscience.iop.org/article/10.3847/1538-3881/aa73d7/meta
dc.relation/*ref*/H. W. L.eung Mak, R. Han, and H. H. F. Yin, “Application of Variational AutoEncoder (VAE) model and image processing approaches in game design,” Sensors, vol. 23, no. 7, p. 3457, Mar. 2023. https://doi.org/10.3390/s23073457
dc.relation/*ref*/D. Millan Escriva, P. Joshi, V. G. Mendonca, and R. Shilkrot, “An Introduction to the Basics of OpenCV,” in Building Computer Vision Projects with OpenCV 4 and C++: Implement complex computer vision algorithms and explore deep learning and face detection. Birmingham, England: Packt Publishing, 2019, ch. 2, pp. 41–48. https://books.google.com.co/books?hl=es&lr=&id=naOPDwAAQBAJ&oi=fnd&pg=PP1&dq=%5B54%5D%09D.+Mill%C3%A1n+Escriv%C3%A1,+P.+Joshi,+V.+G.+Mendon%C3%A7a+y+R.+Shilkrot,+Building+Computer+Vision+Projects+with+OpenCV+4+and+C%2B%2B+:+Implement+Complex+Computer+Vision+Algorithms+and+Explore+Deep+Learning+&ots=_8aHLwVvkn&sig=OydZuiemOrAwI94PNtDxKXsulSo&redir_esc=y#v=onepage&q&f=false
dc.relation/*ref*/M. Nixon, and A. Aguado, “Moving object detection and description,” in Feature extraction and Image Processing for Computer Vision. San Diego, CA, USA: Academic Press, 2019, ch. 9, pp. 257–280. https://books.google.com.co/books?hl=es&lr=&id=KcW-DwAAQBAJ&oi=fnd&pg=PP1&dq=%5B56%5D%09M.+Nixon,+Feature+Extraction+and+Image+Processing+for+Computer+Vision,+3+ed.,+San+Diego,+UNITED+KINGDOM:+Elsevier+Science+%26+Technology&ots=11ly2pRF3S&sig=IkMRT66aDSGNGDjVUTr_Z3AHv2k&redir_esc=y#v=onepage&q&f=false
dc.relation/*ref*/Z. Zhang, "A flexible new technique for camera calibration," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 11, pp. 1330–1334, Nov. 2000. https://doi.org/10.1109/34.888718
dc.relation/*ref*/G. Pau, F. Fuchs, O. Sklyar, M. Boutros, and W. Huber, “EBImage--an R package for image processing with applications to cellular phenotype,s, Bioinformatics, vol. 26, no. 7, pp. 979–981, Apr. 2010. https://doi.org/10.1093/bioinformatics/btq046
dc.relation/*ref*/Beamhit, “Military, DOD, and Law Enforcement Systems,” beamhit.net. Accessed: Feb. 11, 2024. [Online]. Available: https://www.beamhit.net/controlledsystems
dc.relation/*ref*/Vitra, “Comprehensive Simulation Training Solutions for Law Enforcement and Military,” virtra.com, 2024. Accessed: Feb. 11, 2024. [Online]. Available: https://www.virtra.com/?lang=es
dc.relation/*ref*/J. A. Silva Achancaray, “La gestión de las Tecnologías de la Información y Comunicaciones y el desarrollo de Simuladores de Armas en el Comando de Educación y Doctrina del Ejército en el año 2017” Tesis de Maestría, Instituto Científico y Tecnológico del Ejercito, Lima, Perú, 2017. https://repositoriodev.icte.edu.pe/bitstream/handle/ICTE/137/Tesis%20Juan%20Silva%20Achancaray.pdf?sequence=1&isAllowed=y
dc.relation/*ref*/Laser Ammo Traimim Technologies, “Simulador de Smokeless Range 2.0,” laserammo.com, 2025. Accessed: Feb. 11, 2024. [Online]. Available: https://www.laserammo.com/store/Simulators-Targets/Simulators/Smokeless-Range/Smokeless-Range-20-Simulator
dc.relation/*ref*/A. T. Biggs, J. A. Hamilton, A. G. Thompson, and R. Markwald, “Talk is cheap: Self-reported versus actual marksmanship proficiency among military and community samples,” Am. J. Psychol., vol. 137, no. 1, pp. 1–17, Sep. 2024. https://doi.org/10.5406/19398298.137.1.01
dc.relation/*ref*/A. Soetedjo, A. Mahmudi, M. I. Ashari, and Y. I. Nakhoda, “Low cost shooting simulator based on a single board computer,” Am. J. Appl. Sci., vol. 12, no. 2, pp. 130–141, 2015. https://doi.org/10.3844/ajassp.2015.130.141
dc.relation/*ref*/Laser Shot, “Simulador de Entrenamiento de Puntería Móvil,” lasershot.com. Accessed: Feb. 11, 2024. [Online]. Available: https://lasershot.com/es/simuladores-militares/#mmtsmil
dc.relation/*ref*/
dc.rightsDerechos de autor 2025 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 28 No. 62 (2025); e3220en-US
dc.sourceTecnoLógicas; Vol. 28 Núm. 62 (2025); e3220es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectembedded systemsen-US
dc.subjectimage processingen-US
dc.subjectlasersen-US
dc.subjectshooting rangeen-US
dc.subjectsimulation systemsen-US
dc.subjectsistemas embebidoses-ES
dc.subjectprocesamiento de imágeneses-ES
dc.subjectlásereses-ES
dc.subjectpolígono de tiroes-ES
dc.subjectsistemas de simulaciónes-ES
dc.titleImage Processing for Laser Impact Detection in Shooting Simulatorsen-US
dc.titleProcesamiento de imágenes para la detección de un impacto láser en simuladores de tiroes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
3220_MPU_VF_v3.pdf
Tamaño:
938.54 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
344281653008.xml
Tamaño:
161.64 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
344281653008.epub
Tamaño:
2.22 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
3757.html
Tamaño:
168.05 KB
Formato:
Hypertext Markup Language