Image Processing for Laser Impact Detection in Shooting Simulators
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor
Instituto Tecnológico Metropolitano (ITM)
Fecha
Citación
Título de serie/ reporte/ volumen/ colección
Es Parte de
Descripción
Simulation systems play a crucial role in firearms training by offering advantages such as the progressive improvement of shooting skills, reduced logistical costs, ammunition savings, and decreased need for personnel deployment to shooting ranges. A common feature of current systems is the use of wired communication between components, which ensures stability but introduces latency in data transmission. Moreover, wired setups limit their use in outdoor environments due to the lack of access to a power source. This study developed an image-processing-based method to replace live ammunition with a laser-emitting device. The methodology was structured in four phases: (1) system requirements analysis, (2) hardware and software development, (3) system integration with a real firearm, and (4) functional testing in both controlled and open environments. The system incorporates an automatic calibration mechanism that adapts to ambient lighting to ensure accuracy. When the trigger is pulled, the laser activates and projects onto an LCD screen; a camera captures the impact, and an integrated system detects the (x, y) coordinates. As a result, the prototype achieved an accuracy of 95.4% with latency under 80 ms. In conclusion, a portable, wireless system was designed, adaptable to various lighting conditions, consisting of 10 lanes with components specifically designed to integrate with a real firearm—offering a versatile and efficient alternative for training purposes.
Los sistemas de simulación desempeñan un papel crucial en el entrenamiento de tiro, al ofrecer ventajas como la mejora progresiva de las habilidades del tirador, reducción de costos logísticos, ahorro de munición y menor necesidad de despliegue de personal a los polígonos de tiro. Un rasgo común en los sistemas actuales es el uso de comunicación por cable entre componentes, lo cual proporciona estabilidad, pero introduce latencia en la transmisión de datos. Además, las configuraciones cableadas limitan su uso en entornos exteriores por la falta de acceso a una fuente de energía. Este estudio desarrolló un método basado en procesamiento de imágenes para reemplazar la munición real por un dispositivo emisor láser. La metodología se estructuró en cuatro fases: (1) análisis de requisitos del sistema, (2) desarrollo de hardware y software, (3) integración del sistema con un arma de fuego real y (4) pruebas funcionales en ambientes controlados y abiertos. El sistema incorpora un mecanismo de calibración automática que se adapta a la iluminación ambiental para garantizar precisión. Al accionar el gatillo, el láser se activa y proyecta sobre una pantalla LCD; una cámara captura el impacto y un sistema integrado detecta las coordenadas (x, y). Como resultado, el prototipo alcanzó una precisión del 95.4 %, con una latencia inferior a 80 ms. En conclusión, se diseñó un sistema portátil, inalámbrico y adaptable a distintas condiciones de luz, compuesto por 10 pistas con componentes diseñados para integrarse con un arma de fuego real, como alternativa versátil y eficiente para el entrenamiento.
Los sistemas de simulación desempeñan un papel crucial en el entrenamiento de tiro, al ofrecer ventajas como la mejora progresiva de las habilidades del tirador, reducción de costos logísticos, ahorro de munición y menor necesidad de despliegue de personal a los polígonos de tiro. Un rasgo común en los sistemas actuales es el uso de comunicación por cable entre componentes, lo cual proporciona estabilidad, pero introduce latencia en la transmisión de datos. Además, las configuraciones cableadas limitan su uso en entornos exteriores por la falta de acceso a una fuente de energía. Este estudio desarrolló un método basado en procesamiento de imágenes para reemplazar la munición real por un dispositivo emisor láser. La metodología se estructuró en cuatro fases: (1) análisis de requisitos del sistema, (2) desarrollo de hardware y software, (3) integración del sistema con un arma de fuego real y (4) pruebas funcionales en ambientes controlados y abiertos. El sistema incorpora un mecanismo de calibración automática que se adapta a la iluminación ambiental para garantizar precisión. Al accionar el gatillo, el láser se activa y proyecta sobre una pantalla LCD; una cámara captura el impacto y un sistema integrado detecta las coordenadas (x, y). Como resultado, el prototipo alcanzó una precisión del 95.4 %, con una latencia inferior a 80 ms. En conclusión, se diseñó un sistema portátil, inalámbrico y adaptable a distintas condiciones de luz, compuesto por 10 pistas con componentes diseñados para integrarse con un arma de fuego real, como alternativa versátil y eficiente para el entrenamiento.

