Clasificador basado en una máquina de vectores de soporte de mínimos cuadrados frente a un clasificador por regresión logística ante el reconocimiento de dígitos numéricos
QRCode
Compartir
Fecha
2011-11-30Publicador
Instituto Tecnológico Metropolitano (ITM)Citación
Metadatos
Mostrar el registro completo del ítemDocumentos PDF
Resumen
En este artículo se compara el desempeño de una máquina de vectores de soporte de mínimos cuadrados multi-clase (multi-class Least Square Support Vector Machine mc-LSSVM) frente a un clasificador por regresión logística multi-clase, ante el problema del reconocimiento de dígitos numéricos (0-9) escritos a mano. Para desarrollar la comparación se usó un set de datos compuesto por 5000 imágenes de dígitos numéricos escritos a mano (500 imágenes por cada número del 0-9), cada imagen de 20 x 20 pixeles. La entrada a cada uno de los sistemas evaluados fueron vectores de dimensión 400, correspondientes a cada imagen (no se realizó extracción de características). Ambos clasificadores utilizan la estrategia Uno contra todos (OneVsAll) para habilitar la multi-clasificación y una función de validación cruzada aleatoria para el proceso de minimización de la función de costo. Las métricas de comparación fueron la precisión y el tiempo de entrenamiento bajo las mismas condiciones computacionales. Ambas técnicas evaluadas presentaron una precisión superior al 95 %, siendo LS-SVM ligeramente más precisa. Sin embargo, en el costo computacional sí se encontró una diferencia notoria: LS-SVM requiere un tiempo de entrenamiento 16,42 % inferior al requerido por el modelo basado en regresión logística bajos las mismas condiciones computacionales.
Abstract
In this paper is compared the performance of a multi-class least squares support vector machine (LSSVM mc) versus a multi-class logistic regression classifier to problem of recognizing the numeric digits (0-9) handwritten. To develop the comparison was used a data set consisting of 5000 images of handwritten numeric digits (500 images for each number from 0-9), each image of 20 x 20 pixels. The inputs to each of the systems were vectors of 400 dimensions corresponding to each image (not done feature extraction). Both classifiers used OneVsAll strategy to enable multi-classification and a random cross-validation function for the process of minimizing the cost function. The metrics of comparison were precision and training time under the same computational conditions. Both techniques evaluated showed a precision above 95 %, with LS-SVM slightly more accurate. However the computational cost if we found a marked difference: LS-SVM training requires time 16.42 % less than that required by the logistic regression model based on the same low computational conditions.
Palabras clave
Máquina de vectores de soporte; mínimos cuadrados; regresión logística; clasificador; dígitos numéricos
Estadísticas Google Analytics
Colecciones
- Num. 31 (2013) [12]