Clasificador basado en una máquina de vectores de soporte de mínimos cuadrados frente a un clasificador por regresión logística ante el reconocimiento de dígitos numéricos
QRCode
Share this
Date
2011-11-30Publisher
Instituto Tecnológico Metropolitano (ITM)Citation
Metadata
Show full item recordPDF Documents
Abstract
En este artículo se compara el desempeño de una máquina de vectores de soporte de mínimos cuadrados multi-clase (multi-class Least Square Support Vector Machine mc-LSSVM) frente a un clasificador por regresión logística multi-clase, ante el problema del reconocimiento de dígitos numéricos (0-9) escritos a mano. Para desarrollar la comparación se usó un set de datos compuesto por 5000 imágenes de dígitos numéricos escritos a mano (500 imágenes por cada número del 0-9), cada imagen de 20 x 20 pixeles. La entrada a cada uno de los sistemas evaluados fueron vectores de dimensión 400, correspondientes a cada imagen (no se realizó extracción de características). Ambos clasificadores utilizan la estrategia Uno contra todos (OneVsAll) para habilitar la multi-clasificación y una función de validación cruzada aleatoria para el proceso de minimización de la función de costo. Las métricas de comparación fueron la precisión y el tiempo de entrenamiento bajo las mismas condiciones computacionales. Ambas técnicas evaluadas presentaron una precisión superior al 95 %, siendo LS-SVM ligeramente más precisa. Sin embargo, en el costo computacional sí se encontró una diferencia notoria: LS-SVM requiere un tiempo de entrenamiento 16,42 % inferior al requerido por el modelo basado en regresión logística bajos las mismas condiciones computacionales.
Abstract
In this paper is compared the performance of a multi-class least squares support vector machine (LSSVM mc) versus a multi-class logistic regression classifier to problem of recognizing the numeric digits (0-9) handwritten. To develop the comparison was used a data set consisting of 5000 images of handwritten numeric digits (500 images for each number from 0-9), each image of 20 x 20 pixels. The inputs to each of the systems were vectors of 400 dimensions corresponding to each image (not done feature extraction). Both classifiers used OneVsAll strategy to enable multi-classification and a random cross-validation function for the process of minimizing the cost function. The metrics of comparison were precision and training time under the same computational conditions. Both techniques evaluated showed a precision above 95 %, with LS-SVM slightly more accurate. However the computational cost if we found a marked difference: LS-SVM training requires time 16.42 % less than that required by the logistic regression model based on the same low computational conditions.
Palabras clave
Máquina de vectores de soporte; mínimos cuadrados; regresión logística; clasificador; dígitos numéricosCollections
- Num. 31 (2013) [12]