Stability Analysis of Natural Slopes: Comparative Analysis Between the Strength Reduction and Stress Analysis Methods

dc.creatorVázquez García, Jonathan
dc.creatorFernández Limés, Aldo
dc.date2024-12-05
dc.date.accessioned2025-10-01T23:53:14Z
dc.descriptionNatural slopes exhibit a variable cross-section, limiting the applicability of methods developed for regular slopes with constant cross-sections. This study aimed to compare the SAM and SRM methods by analyzing the stability of a slope with two inclinations (54º and 31º). The methodology involved obtaining a topographic surface and analyzing it using the MIDAS GTS NX program to demonstrate the influence of slopes and the analysis method on the factor of safety. The results showed that the influence of slopes is greater than that of the methods. Additionally, it was found that for small slopes, both methods yield similar results for small element sizes in the mesh, while for large slopes, the SAM method is less conservative, presenting values up to 130 % larger compared to SRM. Furthermore, the results obtained with the SAM method indicate that the steep slope is 13.7 % more stable than the gentle slope, which is not realistic. Additionally, the statistical analysis performed shows differences of -0.4 between the SAM and SRM methods on the steep slope, reinforcing the imprecision of the SAM method in obtaining the factor of safety in slopes with high inclinations compared to the SRM method. Therefore, it was concluded that the SRM method is much more effective than the SAM. In addition, it is recommended to use the SAM method as a complement to the SRM method for slopes with low inclinations.en-US
dc.descriptionLas laderas naturales presentan una sección variable, lo que limita el uso de métodos que fueron desarrollados para taludes regulares de sección constante. Este estudio tuvo como objetivo la comparación de los métodos SAM y SRM a través del análisis de estabilidad de una ladera con dos pendientes (54º y 31º). La metodología consistió en la obtención de una superficie topográfica y su análisis empleando el programa MIDAS GTS NX, para demostrar la influencia de pendientes y del método de análisis en el factor de seguridad. Se obtuvo como resultado que la influencia de las pendientes es mayor que la de los métodos. Además, se obtuvo que, en pendientes pequeñas, ambos métodos presentan resultados semejantes para pequeños tamaños de elementos en la malla, mientras que, en grandes pendientes, el método SAM es menos conservador, presentando valores de hasta 130 % más grandes respecto al SRM. Además, los resultados obtenidos con el método SAM indican que la pendiente abrupta es un 13.7 % más estable que la suave, lo cual no es real. Además, el análisis estadístico realizado demuestra diferencias de -0.4 entre los métodos SAM y SRM en la pendiente abrupta, lo que refuerza la imprecisión del método SAM en la obtención del factor de seguridad en taludes con grandes pendientes con respecto al método SRM. Por lo tanto, se concluye con que el método SRM es mucho más efectivo que el SAM. Además, se recomienda emplear el método SAM como complemento del método SRM en laderas de poca inclinación.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3164
dc.identifier10.22430/22565337.3164
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7917
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3164/3416
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3164/3495
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3164/3551
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3164/3563
dc.relation/*ref*/J. A. Sánchez Fornia, and J. Vaunat, “Análisis de la estabilidad de laderas mediante Macro-Elementos,” in Taludes 2022: X Simposio Nacional sobre Taludes y Laderas Inestables, 2022, vol. 978, pp. 666–673. http://hdl.handle.net/2117/373828
dc.relation/*ref*/L. R. Alejano, I. Pérez-Rey, X. Estévez-Ventosa, M. Muñiz-Menéndez, and J. Arzúa, “Natural instability phenomena in granitic rock masses: slopes in decomposed granite, boulder fields and irregular large granitic boulders,” Bol. Geol. Min., vol. 132, no. 4, pp. 375–398, Dec. 2021. https://doi.org/10.21701/bolgeomin.132.4.002
dc.relation/*ref*/C. Sanhueza Plaza, and L. Rodríguez Cifuentes, “Análisis Comparativo de métodos de cálculo de estabilidad de taludes finitos aplicados a laderas naturales,” Rev. Constr., vol. 12, no. 1, pp. 17–29, Apr. 2013. http://dx.doi.org/10.4067/S0718-915X2013000100003
dc.relation/*ref*/A. Burman, S. P. Acharya, R. R. Sahay, and D. Maity, “A comparative study of slope stability analysis using traditional limit equilibrium method and finite element method,” Asian Journal of Civil Engineering, vol. 16, no. 4, pp. 467-492, Jan. 2015. https://www.researchgate.net/publication/274076368
dc.relation/*ref*/A. Mohan, A. K. Singh, B. Kumar, and R. Dwivedi, “Review on remote sensing methods for landslide detection using machine and deep learning,” Trans. Emerg. Telecommun. Technol., vol. 32, no. 7, Jun. 2021. https://doi.org/10.1002/ett.3998
dc.relation/*ref*/Y. Ahangari Nanehkaran et al., “Application of Machine Learning Techniques for the Estimation of the Safety Factor in Slope Stability Analysis,” Water, vol. 14, no. 22, p. 3743, Nov. 2022. https://doi.org/10.3390/w14223743
dc.relation/*ref*/S. Ullah, M. U. Khan, and G. Rehman, “A Brief Review of the Slope Stability Analysis Methods,” Geological Behavior, vol. 4, no. 2, pp. 73-77, 2020. https://doi.org/10.26480/gbr.02.2020.73.77
dc.relation/*ref*/W. Fu, and Y. Liao, “Non-linear shear strength reduction technique in slope stability calculation,” Computers and Geotechnics, vol. 37, no. 3, pp. 288-298, Apr. 2010. https://doi.org/10.1016/j.compgeo.2009.11.002
dc.relation/*ref*/W. Gao, X. Chen, X. Wang, and C. Hu, “Novel strength reduction numerical method to analyse the stability of a fractured rock slope from mesoscale failure,” Eng. Comput., vol. 37, no. 4, pp. 2971–2987, Oct. 2021. https://doi.org/10.1007/s00366-020-00984-2
dc.relation/*ref*/A. P. Dyson, and A. Tolooiyan, “Optimisation of strength reduction finite element method codes for slope stability analysis,” Innovative Infrastructure Solutions, vol. 3, no. 1, p. 38, Apr. 2018. https://doi.org/10.1007/s41062-018-0148-1
dc.relation/*ref*/Z. Nie, Z. Zhang, and H. Zheng, “Slope stability analysis using convergent strength reduction method,” Engineering Analysis with Boundary Elements, vol. 108, pp. 402-410, Nov. 2019. https://doi.org/10.1016/j.enganabound.2019.09.003
dc.relation/*ref*/W. Yuan, B. Bai, L. Xiao-chun, and W. Hai-bin, “A strength reduction method based on double reduction parameters and its application,” Journal of Central South University, vol. 20, no. 9, pp. 2555-2562, Sep. 2013. https://doi.org/10.1007/s11771-013-1768-4
dc.relation/*ref*/X. Jin, Y. Hua, and Q. Tang, “Applying the strength reduction method to study of stability of residual mountains: A particular application,” 3C Tecnol._Glosas Innov. Apl. Pyme., vol. 12, no. 1, pp. 33–52, Jan. 2023. https://doi.org/10.17993/3ctecno.2023.v12n1e43.33-52
dc.relation/*ref*/T. Kadlicek, and D. Mašín, “The strength reduction method in clay hypoplasticity,” in Lecture Notes in Civil Engineering, Cham: Springer International Publishing, 2021, pp. 456–464. https://doi.org/10.1007/978-3-030-64514-4_44
dc.relation/*ref*/B. Świtała, “Strength reduction method in the stability assessment of vegetated slopes,” Architecture, Civil Engineering, Environment, vol. 16, no. 2, pp. 151–159, Mar. 2023. https://intapi.sciendo.com/pdf/10.2478/acee-2023-0024
dc.relation/*ref*/Y. Rui, L. Jiacheng, B. Xuemeng, and Z. Cheng, “Stability analysis of rock slopes using the interface contact model and strength reduction method,” Frontiers in Earth Science, vol. 10, Feb. 2023. https://doi.org/10.3389/feart.2022.1118935
dc.relation/*ref*/X. Zaixian, L. Chao, F. Fang, and W. Fufei, “Study on the Stability of Soil–Rock Mixture Slopes Based on the Material Point Strength Reduction Method,” Applied Sciences, vol. 12, no. 22, p. 11595, Nov. 2022. https://doi.org/10.3390/app122211595
dc.relation/*ref*/MIDAS. “midas GTS NX, software de elementos finitos para análisis geotécnicos en 2D y 3D.” midasoft.com. Accessed: Apr. 1, 2024. [Online]. Available: https://www.midasoft.com/es/latinoamerica/productos/geotecnica/midasgtsnx
dc.relation/*ref*/Z. Renato, E. Luca, F. Paolo, P. Simone, T. Elena, and V. Minutolo, Lower bound limit analysis through discontinuous finite elements and semi-analytical procedures, in Theoretical and Applied Mechanics: AIMETA 2022, M. Di Paola, L. Fratini, F. Micari, and A. Pirrotta, Eds., Millersville PA, USA: Materials Research Forum LLC, 2023. https://books.google.com.co/books?hl=es&lr=&id=IaO3EAAAQBAJ&oi=fnd&pg=PA139&dq=Lower+bound+limit+analysis+through+discontinuous+finite+elements+and+semi-analytical+procedures&ots=-J3x4Hcgl7&sig=NYoI5opQejOra6GsQCSJbl7tA1o&redir_esc=y#v=onepage&q=Lower%20bound%20limit%20analysis%20through%20discontinuous%20finite%20elements%20and%20semi-analytical%20procedures&f=false
dc.relation/*ref*/S. Liu, and L. Shao, “Limit equilibrium conditions and stability analysis for soils,” in Proceedings of GeoShanghai 2018 International Conference: Fundamentals of Soil Behaviours, A. Zhou, J. Tao, X. Gu, and L. Hu, Eds., Singapore: Springer Singapore, 2018, pp. 92–100. https://www.doi.org/10.1007/978-981-13-0125-4_10
dc.relation/*ref*/F. Sengani, and F. Mulenga, “Application of Limit Equilibrium Analysis and Numerical Modeling in a Case of Slope Instability,” Sustainability, vol. 12, no. 21, Oct. 2020. https://www.doi.org/10.3390/SU12218870
dc.relation/*ref*/K. J. Agbelele, E. C. Houehanou, M. F. Ahlinhan, A. W. Ali, and H.C. Aristide, “Assessment of Slope Stability by the Fellenius Slice Method: Analytical and numerical approach,” World Journal of Advanced Research and Reviews, vol. 18, no. 2, pp. 1205-1214, May. 2023. https://wjarr.com/sites/default/files/WJARR-2023-0874.pdf
dc.relation/*ref*/J. Briceño et al., “Análisis comparativo de estabilidad en taludes utilizando métodos comprobados y modelos numéricos de simulación,” Revista Ciencia e Ingeniería, vol. 42, no. 1, pp. 63-70, Dec-Mar. 2021. http://erevistas.saber.ula.ve/index.php/cienciaeingenieria/article/view/16646
dc.relation/*ref*/A. A. Kareem, B. K. Oleiwi, and M. J. Mohamed, “Planning the Optimal 3D Quadcopter Trajectory Using a Delivery System-Based Hybrid Algorithm,” International Journal of Intelligent Engineering and Systems, vol. 16, no. 2, Apr. 2023. https://doi.org/10.22266/ijies2023.0430.34
dc.relation/*ref*/A. A. Kareem, M. J. Mohamed, and B. K. Oleiwi, “Unmanned aerial vehicle path planning in a 3D environment using a hybrid algorithm,” Bulletin of Electrical Engineering and Informatics, vol. 13, no. 2, pp. 905-915, Apr. 2024. https://beei.org/index.php/EEI/article/view/6020/3616
dc.relation/*ref*/P. Fejes, and A. Horkai, “Creating City Models in ArchiCAD Software Environment,” The International Journal of Engineering and Science (IJES), vol. 10, no. 1, pp. 11-17, Jan. 2021. https://www.theijes.com/papers/vol10-issue1/C1001011117.pdf
dc.relation/*ref*/C. Carbonell-Carrera, J. L. Saorin, D. Melián-Díaz, and S. Hess-Medler, “Spatial Orientation Skill Performance with a Workshop Based on Green Infrastructure in Cities,” ISPRS International Journal of Geo-Information, vol. 9, no. 4, p. 216, Apr. 2020. https://doi.org/10.3390/ijgi9040216
dc.relation/*ref*/C. O. Aksoy, G. G. Uyar, and Y. Ozcelik, “Comparison of Hoek-Brown and Mohr-Coulomb failure criterion for deep open coal mine slope stability,” Structural Engineering and Mechanics, vol. 60, no. 5, pp. 809-828, Dec. 2016. https://doi.org/10.12989/sem.2016.60.5.809
dc.relation/*ref*/A. V. R. Karthik, R. Manideep, and J. T. Chavda, “Sensitivity analysis of slope stability using finite element method.," Innov. Infrastruct. Solut., vol. 7, no. 2, p. 184, Mar. 2022. https://doi.org/10.1007/s41062-022-00782-3
dc.relation/*ref*/N. Latha, “Numerical Studies on Stability of Sand Slopes.,” ECS transactions, vol. 107, no. 1, pp. 15309–15315, 2022. https://doi.org/10.1149/10701.15309ecst
dc.relation/*ref*/W. Sun, G. Wang, and L. Zhang, “Slope stability analysis by strength reduction method based on average residual displacement increment criterion,” Bulletin of Engineering Geology and the Environment, vol. 80, no. 6, pp. 4367-4378, Jun. 2021. https://doi.org/10.1007/s10064-021-02237-y
dc.rightsDerechos de autor 2024 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 27 No. 61 (2024); e3164en-US
dc.sourceTecnoLógicas; Vol. 27 Núm. 61 (2024); e3164es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectfactor of safetyen-US
dc.subjectmidas softwareen-US
dc.subjectslope stabilityen-US
dc.subjectstrength reduction methoden-US
dc.subjectstress analysis methoden-US
dc.subjectfactor de seguridades-ES
dc.subjectsoftware midases-ES
dc.subjectestabilidad de taludeses-ES
dc.subjectmétodo reducción de esfuerzoses-ES
dc.subjectmétodo análisis de tensiónes-ES
dc.titleStability Analysis of Natural Slopes: Comparative Analysis Between the Strength Reduction and Stress Analysis Methodsen-US
dc.titleAnálisis de estabilidad en taludes naturales: análisis comparativo entre el método de reducción de esfuerzos y análisis de tensiónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
3164-MPU-VF_v2.pdf
Tamaño:
770.53 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
2256-5337-teclo-27-61-e205.xml
Tamaño:
82.81 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
344278917004.epub
Tamaño:
1.18 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
3563.html
Tamaño:
137.15 KB
Formato:
Hypertext Markup Language