Influence of Energy Conservation Measures on the Load Profile of Homes in a Tropical Climate: Case Study in Bucaramanga, Colombia
dc.creator | Cárdenas-Rangel, Jorge | |
dc.creator | Jaramillo-Ibarra, Julián | |
dc.creator | Osma-Pinto, German | |
dc.date | 2025-08-19 | |
dc.date.accessioned | 2025-10-01T23:53:17Z | |
dc.description | The residential sector represents a significant part of energy consumption in tropical countries, where the climate directly influences the demand for ventilation and air conditioning. In cities like Bucaramanga (Colombia), the growth of building stock and the increased use of electrical appliances highlight the need for energy efficiency strategies. Although Colombia has made regulatory progress—such as Resolution 0549 of 2015—its application in residential buildings, especially in warm climates, remains underexplored. This study analyzes the impact of energy-saving measures on the demand profile of a middle-income residential building located in a tropical warm climate. The implementation of strategies recommended by Resolution 0549-2015 was evaluated through energy simulations using DesignBuilder V6. The methodology considered five scenarios: an existing building, one representing typical features of the current building stock, and three others that incorporate horizontal shading, natural ventilation, and variations in the window-to-wall ratio. The results showed a 20% reduction in energy consumption in the existing building compared to the reference model, mainly due to improvements in lighting and elevator efficiency. It is concluded that the proposed energy-saving measures are effective only when air conditioning systems are present and that their implementation can help reduce transformer loads. This study offers a valuable local contribution, being one of the first in Colombia to examine residential building design from an energy efficiency perspective, based on national regulations and simulation tools. | en-US |
dc.description | El sector residencial representa una parte importante del consumo energético en países tropicales, donde el clima influye directamente en la demanda de ventilación y climatización. En ciudades como Bucaramanga (Colombia), el crecimiento del parque inmobiliario y el mayor uso de equipos eléctricos hacen necesaria la adopción de estrategias de eficiencia energética. Aunque Colombia ha avanzado en normativa, como la Resolución 0549 de 2015, su aplicación en viviendas, especialmente en climas cálidos, ha sido poco estudiada. Este trabajo analiza el impacto de medidas de ahorro energético sobre el perfil de demanda de una edificación residencial de ingresos medios ubicada en clima tropical cálido. Se evaluó la implementación de estrategias sugeridas por la Resolución 0549-2015 mediante simulaciones energéticas en DesignBuilder V6. La metodología consideró cinco escenarios: un edificio existente, uno con características del parque inmobiliario actual y tres que integran sombreado horizontal, ventilación natural y variaciones en la relación ventana-pared. Los resultados mostraron una reducción del 20 % en el consumo energético del edificio existente respecto al de referencia, principalmente por mejoras en iluminación y ascensores. Se concluye que las medidas propuestas tienen efecto sobre el consumo, solo cuando hay sistemas de aire acondicionado, y que su implementación puede reducir la carga en los transformadores. Este estudio representa una contribución local relevante al ser uno de los primeros en Colombia que examina el diseño de viviendas desde un enfoque de eficiencia energética, apoyado en normativa nacional y simulación computacional. | es-ES |
dc.format | application/pdf | |
dc.format | text/xml | |
dc.format | application/zip | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3383 | |
dc.identifier | 10.22430/22565337.3383 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12622/7943 | |
dc.language | eng | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | es-ES |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3383/3718 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3383/3784 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3383/3785 | |
dc.relation | /*ref*/REN21, “Renewables 2021 global status report 2021,” París, France, 2021. [Online]. Available: https://www.ren21.net/wp-content/uploads/2019/05/GSR2021_Full_Report.pdf | |
dc.relation | /*ref*/World Green Building Council, “2018 Global Status Report − Towards a zero‐emission, efficient and resilient buildings and construction sector,” London, 2018. [Online]. Available: https://worldgbc.org/article/2018-global-status-report-towards-a-zero-emission-efficient-and-resilient-buildings-and-construction-sector/ | |
dc.relation | /*ref*/United Nations Environment Programme, “2020 Global Status Report for Buildings and Construction: Towards a Zero-emission, Efficient and Resilient Buildings and Construction Sector,” Nairobi, 2020. [Online]. Available: https://globalabc.org/resources/publications/2020-global-status-report-buildings-and-construction | |
dc.relation | /*ref*/A. Vieira de Carvalho et al., Guía E: Programas de normalización y etiquetado de eficiencia energética, Washington, DC, USA: Inter-america Developement, 2015. https://doi.org/10.18235/0000225 | |
dc.relation | /*ref*/A. Abd Aziz, D. Sumiyoshi, and Y. Akashi, “Low cost humidity controlled air-conditioning system for building energy savings in tropical climate,” J. Build. Eng., vol. 11, pp. 9–16, May. 2017. https://doi.org/10.1016/j.jobe.2017.03.005 | |
dc.relation | /*ref*/A. Dutta, and A. Samanta, “Reducing cooling load of buildings in the tropical climate through window glazing: A model to model comparison,” J. Build. Eng., vol. 15, pp. 318–327, Jan. 2018. https://doi.org/10.1016/j.jobe.2017.12.005 | |
dc.relation | /*ref*/S. Pathirana, R. Halwatura, and A. Rodrigo, “Sustainable approach to energy rating system for residential buildings,” Asian J. Civ. Eng., vol. 21, no. 8, pp. 1331–1342, Jul. 2020. https://doi.org/10.1007/s42107-020-00280-w | |
dc.relation | /*ref*/L. De León, D. Mora, C. Carpino, N. Arcuri, and M. Chen Austin, “A Reference Framework for Zero Energy Districts in Panama Based on Energy Performance Simulations and Bioclimatic Design Methodology,” Buildings, vol. 13, no. 2, p. 315, Jan. 2023. https://doi.org/10.3390/buildings13020315 | |
dc.relation | /*ref*/J. Neale, M. Haris Shamsi, E. Mangina, D. Finn, and J. O’Donnell, “Accurate identification of influential building parameters through an integration of global sensitivity and feature selection techniques,” Appl. Energy, vol. 315, p. 118956, Jun. 2022. https://doi.org/10.1016/j.apenergy.2022.118956 | |
dc.relation | /*ref*/H. Wang, and Q. Chen, “Impact of climate change heating and cooling energy use in buildings in the United States,” Energy Build., vol. 82, pp. 428–436, Oct. 2014. https://doi.org/10.1016/j.enbuild.2014.07.034 | |
dc.relation | /*ref*/F. Mohammed Bashir, Y. Aminu Dodo, M. A. Said Mohamed, N. Norwawi, N. M. Shannan, and A. Aghajani Afghan, “Effects of natural light on improving the lighting and energy efficiency of buildings: toward low energy consumption and CO2 emission,” Int. J. Low-Carbon Technol., vol. 19, pp. 296–305, Feb. 2024. https://doi.org/10.1093/ijlct/ctad130 | |
dc.relation | /*ref*/A. Shahee, M. Abdoos, A. Aslani, and R. Zahedi, “Reducing the energy consumption of buildings by implementing insulation scenarios and using renewable energies,” Energy Inform., vol. 7, no. 18, Mar. 2024. https://doi.org/10.1186/s42162-024-00311-9 | |
dc.relation | /*ref*/W. Rattanongphisat, and W. Rordprapat, “Strategy for energy efficient buildings in tropical climate,” Energy Procedia, vol. 52, pp. 10–17, 2014. https://doi.org/10.1016/j.egypro.2014.07.049 | |
dc.relation | /*ref*/K. Mihara, C. Sekhar, Y. Takemasa, B. Lasternas, and K. Wai Tham, “Thermal comfort and energy performance of a dedicated outdoor air system with ceiling fans in hot and humid climate,” Energy Build., vol. 203, p. 109448, Nov. 2019. https://doi.org/10.1016/j.enbuild.2019.109448 | |
dc.relation | /*ref*/A. Dodoo, and A. Joshua, “Effects of Climate Change for Thermal Comfort and Energy Performance of Residential Buildings in a Sub-Saharan African Climate,” Buildings, vol. 9, no. 10, p. 215, Oct. 2019. https://doi.org/10.3390/buildings9100215 | |
dc.relation | /*ref*/S. Mohamed Zaid, E. Perisamy, H. Hussein, N. Elyna Myeda, and N. Zainon, “Vertical Greenery System in urban tropical climate and its carbon sequestration potential: A review,” Ecol. Indic., vol. 91, pp. 57–70, Aug. 2018. https://doi.org/10.1016/j.ecolind.2018.03.086 | |
dc.relation | /*ref*/Z. Huang, Y. Lu, N. Hien Wong, and C. Hock Poh, “The true cost of ‘greening’ a building: Life cycle cost analysis of vertical greenery systems (VGS) in tropical climate,” J. Clean. Prod., vol. 228, pp. 437–454, Aug. 2019. https://doi.org/10.1016/j.jclepro.2019.04.275 | |
dc.relation | /*ref*/Disposiciones Resolución 0549 de 2015, 0549, Ministerio de Vivienda, Ciudad y Territorio de Colombia, Bogotá, Colombia, 2015. [Online]. Available: https://www.minvivienda.gov.co/node/48921 | |
dc.relation | /*ref*/Anexo 1 - Resolución 0549: Guía de construcción sostenible para el ahorro de agua y energía en edificaciones, 0549, Ministerio de Vivienda, Ciudad y Territorio de Colombia, Bogotá, Colombia, 2015. [Online]. Available: https://www.minvivienda.gov.co/system/files/consultasp/anexo-1-guia-de-construccion-sostenible.pdf | |
dc.relation | /*ref*/J. A. Nieves, A. J. Aristizábal, I. Dyner, O. Báez, and D. H. Ospina, “Energy demand and greenhouse gas emissions analysis in Colombia: A LEAP model application,” Energy, vol. 169, pp. 380–397, Feb. 2019. https://doi.org/10.1016/j.energy.2018.12.051 | |
dc.relation | /*ref*/J. Arias-Gaviria, V. Valencia, Y. Olaya, and S. Arango-Aramburo, “Simulating the effect of sustainable buildings and energy efficiency standards on electricity consumption in four cities in Colombia: A system dynamics approach,” J. Clean. Prod., vol. 314, p. 128041, Sep. 2021. https://doi.org/10.1016/j.jclepro.2021.128041 | |
dc.relation | /*ref*/S. Gou, V. M. Nik, J. L. Scartezzini, Q. Zhao, and Z. Li, “Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand,” Energy Build., vol. 169, pp. 484–506, Jun. 2018. https://doi.org/10.1016/j.enbuild.2017.09.095 | |
dc.relation | /*ref*/A. Ioannou, and L. C. M. Itard, “Energy performance and comfort in residential buildings: Sensitivity for building parameters and occupancy,” Energy Build., vol. 92, pp. 216–233, Apr. 2015. https://doi.org/10.1016/j.enbuild.2015.01.055 | |
dc.relation | /*ref*/J. Cárdenas-Rangel, G. Osma-Pinto, and J. Jaramillo-Ibarra, “Energy characterization of residential and office buildings in a tropical location,” Heliyon, vol. 9, no. 5, p. e16048, May. 2023. https://doi.org/10.1016/j.heliyon.2023.e16048 | |
dc.relation | /*ref*/M. Zabaloy, M. Y. Recalde, and C. Guzowski, “Are energy efficiency policies for household context dependent? A comparative study of Brazil, Chile, Colombia and Uruguay,” Energy Res. Soc. Sci., vol. 52, pp. 41–54, Jun. 2019. https://doi.org/10.1016/j.erss.2019.01.015 | |
dc.relation | /*ref*/J. M. Medina, C. M. Rodriguez, M. C. Coronado, and L. M. Garcia, “Scoping Review of Thermal Comfort Research in Colombia,” Buildings, vol. 11, no. 6, p. 232, May. 2021. https://doi.org/10.3390/buildings11060232 | |
dc.relation | /*ref*/A. Arteconi, N. J. Hewitt, and F. Polonara, “Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems,” Appl. Therm. Eng., vol. 51, no. 1–2, pp. 155–165, Mar. 2013. https://doi.org/10.1016/j.applthermaleng.2012.09.023 | |
dc.relation | /*ref*/T. Lang, D. Ammann, and B. Girod, “Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings,” Renew. Energy, vol. 87, no. Part 1, pp. 77–87, Mar. 2016. https://doi.org/10.1016/j.renene.2015.09.059 | |
dc.relation | /*ref*/P. R. S. Jota, V. R. B. Silva, and F. G. Jota, “Building load management using cluster and statistical analyses,” Int. J. Electr. Power Energy Syst., vol. 33, no. 8, pp. 1498–1505, Oct. 2011. https://doi.org/10.1016/j.ijepes.2011.06.034 | |
dc.relation | /*ref*/A. Elnakat, J. D. Gomez, and M. Wright, “A measure to manage approach to characterizing the energy impact of residential building stocks,” AIMS Energy, vol. 4, no. 4, pp. 574–588, May. 2016. https://doi.org/10.3934/energy.2016.4.574 | |
dc.relation | /*ref*/P. Morris, D. Vine, and L. Buys, “Residential consumer perspectives of effective peak electricity demand reduction interventions as an approach for low carbon communities.,” AIMS Energy, vol. 4, no. 3, pp. 536–556, May. 2016. https://doi.org/10.3934/energy.2016.3.536 | |
dc.relation | /*ref*/J. Nelson, N. G. Johnson, P. Tej Chinimilli, and W. Zhang, “Residential cooling using separated and coupled precooling and thermal energy storage strategies,” Appl. Energy, vol. 252, p. 113414, Oct. 2019. https://doi.org/10.1016/j.apenergy.2019.113414 | |
dc.relation | /*ref*/P. Saji Raveendran, and S. Joseph Sekhar, “Experimental studies on the performance improvement of household refrigerator connected to domestic water system with a water-cooled condenser in tropical regions,” Appl. Therm. Eng., vol. 179, p. 115684, Oct. 2020. https://doi.org/10.1016/j.applthermaleng.2020.115684 | |
dc.relation | /*ref*/B. Ouhammou et al., “Energy saving potential diagnosis for Moroccan university campuses,” AIMS Energy, vol. 11, no. 3, pp. 576–611, Jun. 2023. https://doi.org/10.3934/ENERGY.2023030 | |
dc.relation | /*ref*/J. Cárdenas-Rangel, G. Osma-Pinto, and J. Jaramillo-Ibarra, “Improvement proposal of bottom-up approach for the energy characterization of buildings in the tropical climate,” Buildings, vol. 11, no. 4, p. 159, Apr. 2021. https://doi.org/10.3390/buildings11040159 | |
dc.relation | /*ref*/J. Cárdenas-Rangel, J. Jaramillo-Ibarra, and G. Osma-Pinto, “Estimation of the impact of energy efficiency measures recommended by Colombian legislation on the performance of low- and middle-income housing buildings,” J. Build. Eng., vol. 52, p. 104402, Jul. 2022. https://doi.org/10.1016/j.jobe.2022.104402 | |
dc.relation | /*ref*/D. Sekartaji, Y. Ryu, and D. Novianto, “Effect of ventilation patterns on indoor thermal comfort and air-conditioning cooling and heating load using simulation,” City Built Environ., vol. 1, no. 14, pp. 1–24, Sep. 2023. https://doi.org/10.1007/s44213-023-00015-y | |
dc.relation | /*ref*/D. B. Lu, and D. M. Warsinger, “Energy savings of retrofitting residential buildings with variable air volume systems across different climates,” J. Build. Eng., vol. 30, p. 101223, Jul. 2020. https://doi.org/10.1016/j.jobe.2020.101223 | |
dc.relation | /*ref*/U. Sachinthana Perera, A. U. Weerasuriya, X. Zhang, R. Ruparathna, M. G. I. Tharaka, and C. S. Lewangamage, “Selecting suitable passive design strategies for residential high-rise buildings in tropical climates to minimize building energy demand,” Build. Environ., vol. 267, no. Part B, p. 112177, Jan. 2025. https://doi.org/10.1016/j.buildenv.2024.112177 | |
dc.relation | /*ref*/ | |
dc.rights | Derechos de autor 2025 TecnoLógicas | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0 | es-ES |
dc.source | TecnoLógicas; Vol. 28 No. 63 (2025); e3383 | en-US |
dc.source | TecnoLógicas; Vol. 28 Núm. 63 (2025); e3383 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | building energy simulation | en-US |
dc.subject | energy conservation | en-US |
dc.subject | energy demand | en-US |
dc.subject | energy efficiency | en-US |
dc.subject | residential buildings | en-US |
dc.subject | simulación energética de edificaciones | es-ES |
dc.subject | conservación de energía | es-ES |
dc.subject | demanda energética | es-ES |
dc.subject | eficiencia energética | es-ES |
dc.subject | edificaciones residenciales | es-ES |
dc.title | Influence of Energy Conservation Measures on the Load Profile of Homes in a Tropical Climate: Case Study in Bucaramanga, Colombia | en-US |
dc.title | Influencia de medidas de conservación de energía en el perfil de carga de viviendas en un clima tropical: estudio de caso en Bucaramanga, Colombia | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Research Papers | en-US |
dc.type | Artículos de investigación | es-ES |