Bibliometric Review of Wastewater Treatment Using Fruit Residues as a Means of Dye Adsorption: An Overview

dc.creatorSaldaña-Escorcia, Rossember
dc.creatorPiña-Velásquez, Danilo Alfonso
dc.date2025-09-26
dc.date.accessioned2025-10-01T23:53:17Z
dc.descriptionCurrently, conservation of water resources is a major challenge. For this reason, research has intensified into methodologies that are not only efficient but also economically viable for treating wastewater from the textile industry. The objective of this study was to reveal the current state of scientific literature related to the use of fruit waste as a means of adsorbing dyes in wastewater treatment. The methodology used consisted of a bibliometric analysis based on documents indexed in Scopus® published between 2010 and 2022. Significant trends within the field were determined using networks through VOSviewer software. Initially, 705 documents were found and after applying the filters, 532 documents published during the search period were obtained. The study found that China is the leading country, accounting for 38.72 % of all publications. Likewise, author Liu, Y. obtained the highest number of citations, followed by Ren, S. and Yan, Q. In addition, the average number of citations per document was 28.83, with a total of 2027 authors and an average of 3.81 authors per publication. On the other hand, Chemosphere was the journal with the highest number of publications, followed by the Journal of Environmental Chemical Engineering and Water Science & Technology. The results provided a broad overview of the research landscape on wastewater treatment using fruit waste as bioadsorbents, which serves as a basis for future research. Finally, it is concluded that the data obtained provide guidance on the most important authors, journals, materials, mathematical models, and use of characterization techniques. Despite being a relevant topic, a search of the literature reveals no bibliometric analyses on the subject. Thus, bibliometric analyses are an interesting alternative to traditional literature reviews.en-US
dc.descriptionEn la actualidad, la conservación de los recursos hídricos es un desafío importante. Por tal motivo, se ha intensificado el estudio de metodologías que no solo sean eficientes, sino que también sean económicamente viables para tratar aguas residuales de la industria textil. Este estudio tuvo como objetivo revelar el estado actual de la literatura científica relacionada con la utilización de los residuos frutales como medio de adsorción de colorantes en el tratamiento de las aguas residuales. La metodología empleada consistió en un análisis bibliométrico con base en los documentos indexados en Scopus® y publicados entre 2010 y 2022. Las tendencias trascendentales dentro del campo se determinaron utilizando redes por medio del software VOSviewer. Inicialmente, se encontraron 705 documentos y luego de aplicar los filtros se obtuvieron 532 documentos publicados durante el rango de búsqueda. Se encontró que China es el país predominante con el 38,72 % del total de las publicaciones. Asimismo, el autor Liu, Y. obtuvo el mayor número de citaciones seguido por Ren, S. y Yan, Q. Además, el promedio de citas por documento fue de 28,83, con un total de 2027 autores y una media de 3,81 autores por publicación. Por otro lado, Chemosphere fue la revista con mayor número de publicaciones seguidas de Journal of Environmental Chemical Engineering y Water Science & Technology. Los resultados permitieron obtener una visión amplia sobre el panorama investigativo del tratamiento de agua residuales utilizando residuos frutales como bioadsorbentes, lo cual sirve de base para futuras investigaciones. Finalmente, se concluye que los datos obtenidos orientan en cuanto autores, revistas, materiales, modelos matemáticos y uso de técnicas de caracterización más importantes. A pesar de ser un tema relevante, haciendo una búsqueda en la literatura, no se encontraron análisis bibliométricos sobre la temática. Es así como los análisis bibliométricos son una alternativa interesante a las revisiones literarias tradicionales.es-ES
dc.formatapplication/pdf
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3455
dc.identifier10.22430/22565337.3455
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7945
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3455/3735
dc.relation/*ref*/T. M. Budnyak et al., “Methylene Blue dye sorption by hybrid materials from technical lignins,” J. Environ. Chem. Eng., vol. 6, no. 4, pp. 4997-5007, Aug. 2018. https://doi.org/10.1016/j.jece.2018.07.041
dc.relation/*ref*/S.-M. Lam, J.-C. Sin, A. Zuhairi Abdullah, and A. Rahman Mohamed, “Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review,” Desalin. Water Treat., vol. 41, no. 1-3, pp. 131-169, Mar. 2012. https://doi.org/10.1080/19443994.2012.664698
dc.relation/*ref*/M. Shabir et al., “A review on recent advances in the treatment of dye-polluted wastewater,” J. Ind. Eng. Chem., vol. 112, pp. 1-19, Aug. 2022. https://doi.org/10.1016/j.jiec.2022.05.013
dc.relation/*ref*/L. Dali Youcef, L. Setti Belaroui, and A. López-Galindo, “Adsorption of a cationic methylene blue dye on an Algerian palygorskite,” Appl. Clay Sci., vol. 179, p. 105145, Oct. 2019. https://doi.org/10.1016/j.clay.2019.105145
dc.relation/*ref*/M. Tichonovas et al., “Degradation of various textile dyes as wastewater pollutants under dielectric barrier discharge plasma treatment,” Chem. Eng. J., vol. 229, pp. 9-19, Aug. 2013. https://doi.org/10.1016/j.cej.2013.05.095
dc.relation/*ref*/O. Üner, Ü. Geçgel, and Y. Bayrak, “Adsorption of Methylene Blue by an Efficient Activated Carbon Prepared from Citrullus lanatus Rind: Kinetic, Isotherm, Thermodynamic, and Mechanism Analysis,” Water Air Soil Pollut., vol. 227, no. 247, Jun. 2016. https://doi.org/10.1007/s11270-016-2949-1
dc.relation/*ref*/A. Prince Periyasamy, “Recent Advances in the Remediation of Textile-Dye-Containing Wastewater: Prioritizing Human Health and Sustainable Wastewater Treatment,” Sustain., vol. 16, no. 2, p. 495, Jan. 2024. https://doi.org/10.3390/su16020495
dc.relation/*ref*/W. Lun Ang, and A. Wahab Mohammad, “State of the art and sustainability of natural coagulants in water and wastewater treatment,” J. Clean. Prod., vol. 262, p. 121267, Jul. 2020. https://doi.org/10.1016/j.jclepro.2020.121267
dc.relation/*ref*/L. Hevira, Zilfa, Rahmayeni, J. O. Ighalo, H. Aziz, and R. Zein, “Terminalia catappa shell as low-cost biosorbent for the removal of methylene blue from aqueous solutions,” J. Ind. Eng. Chem., vol. 97, pp. 188-199, May. 2021. https://doi.org/10.1016/j.jiec.2021.01.028
dc.relation/*ref*/A. Stavrinou, C. A. Aggelopoulos, and C. D. Tsakiroglou, “Exploring the adsorption mechanisms of cationic and anionic dyes onto agricultural waste peels of banana, cucumber and potato: Adsorption kinetics and equilibrium isotherms as a tool,” J. Environ. Chem. Eng., vol. 6, no. 6, pp. 6958-6970, Dec. 2018. https://doi.org/10.1016/j.jece.2018.10.063
dc.relation/*ref*/S. M. de Oliveira Brito, J. L. Cunha Cordeiro, L. da Cunha Ramalho, and J. F. Ribeiro Oliveira, “Eriochrome black adsorption on yellow passion fruit peel (Passiflora edulis f. Flavicarpa) treated with sodium hydroxide and nitric acid: study of adsorption isotherms, kinetic models and thermodynamic parameters,” SN Appl. Sci., vol. 1, no. 1226, pp. 1-16, Sep. 2019. https://doi.org/10.1007/s42452-019-1266-x
dc.relation/*ref*/A. K. Tolkou, E. K. Tsoutsa, I. A. Katsoyiannis, and G. Z. Kyzas, “Simultaneous removal of anionic and cationic dyes on quaternary mixtures by adsorption onto banana, orange and pomegranate peels,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 685, p. 133176, Mar. 2024. https://doi.org/10.1016/j.colsurfa.2024.133176
dc.relation/*ref*/F. Amalina, A. Syukor Abd Razak, S. Krishnan, A. W. Zularisam, and M. Nasrullah, “Dyes removal from textile wastewater by agricultural waste as an absorbent – A review,” Clean. Waste Syst., vol. 3, p. 100051, Dec. 2022. https://doi.org/10.1016/j.clwas.2022.100051
dc.relation/*ref*/M. Kadhom, N. Albayati, H. Alalwan, and M. Al-Furaiji, “Removal of dyes by agricultural waste,” Sustain. Chem. Pharm., vol. 16, p. 100259, Jun. 2020. https://doi.org/10.1016/j.scp.2020.100259
dc.relation/*ref*/A. N. Md Ahsanul Haque, N. Sultana, A. S. Muhammad Sayem, and S. Akter Smriti, “Sustainable Adsorbents from Plant-Derived Agricultural Wastes for Anionic Dye Removal: A Review,” Sustain., vol. 14, no. 17, p. 11098, Sep. 2022. https://doi.org/10.3390/su141711098
dc.relation/*ref*/A. A. Al-Gheethi et al., “Sustainable approaches for removing Rhodamine B dye using agricultural waste adsorbents: A review,” Chemosphere, vol. 287, no. Part 2, p. 132080, Jan. 2022. https://doi.org/10.1016/j.chemosphere.2021.132080
dc.relation/*ref*/M. Irfan, X. Liu, K. Hussain, S. Mushtaq, J. Cabrera, and P. Zhang, “The global research trend on cadmium in freshwater: a bibliometric review,” Environ. Sci. Pollut. Res., vol. 30, pp. 71585-71598, Apr. 2021. https://doi.org/10.1007/s11356-021-13894-7
dc.relation/*ref*/N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. Marc Lim, “How to conduct a bibliometric analysis: An overview and guidelines,” J. Bus. Res., vol. 133, pp. 285-296, Sep. 2021. https://doi.org/10.1016/j.jbusres.2021.04.070
dc.relation/*ref*/M. E. Falagas, E. I. Pitsouni, G. A. Malietzis, and G. Pappas, “Comparison of PubMed, Scopus, Web of Science, and Google Scholar: strengths and weaknesses,” The FASEB J., vol. 22, no. 2, pp. 338-342, Feb. 2008. https://doi.org/10.1096/fj.07-9492lsf
dc.relation/*ref*/Scopus, “SciVerse Scopus,” elsevier.com, 2020. Accessed: Dec. 06, 2020. [Online]. Available: http://www.elsevier.com/online-tools/scopus
dc.relation/*ref*/E. M. Bartels, “How to perform a systematic search,” Best Pract. Research: Clin. Rheum., vol. 27, no. 2, pp. 295-306, Apr. 2013. https://doi.org/10.1016/j.berh.2013.02.001
dc.relation/*ref*/N. J. Van Eck, and L. Waltman, “Bibliometric mapping of the computational intelligence field,” Int. J. Uncert. Fuzziness Know Based Syst., vol.15, no. 5, pp. 625-645, Oct. 2007. https://doi.org/10.1142/S0218488507004911
dc.relation/*ref*/N. J. Van Eck, L. Waltman, J. van den Berg, and U. Kaymak, “Visualizing the computational intelligence field,” IEEE Comput. Intell. Mag., vol. 1, no. 4, pp. 6-10, Nov. 2006. https://doi.org/10.1109/mci.2006.329702
dc.relation/*ref*/N. J. Van Eck and L. Waltman, “Software survey: VOSviewer, a computer program for bibliometric mapping,” Scientometrics, vol. 84, no. 2, pp. 523-538, Dec. 2010. https://doi.org/10.1007/s11192-009-0146-3
dc.relation/*ref*/V. K. Gupta, P. J. M. Carrott, M. M. L. Ribeiro Carrott, and Suhas, “Low-Cost Adsorbents: Growing Approach to Wastewater Treatment—a Review,” Crit. Rev. Environ. Sci. Technol., vol. 39, no. 10, pp. 783-842, Oct. 2009. https://doi.org/10.1080/10643380801977610
dc.relation/*ref*/M. G. Valladares-Cisneros, C. Valerio Cárdenas, P. de la Cruz Burelo, and R. M. Melgoza Alemán, “Adsorbentes no-convencionales, alternativas sustentables para el tratamiento de aguas residuales,” Rev. Ing. Univ. Medellín, vol. 16, no. 31, pp. 55-73, Dec. 2017. https://doi.org/10.22395/rium.v16n31a3
dc.relation/*ref*/G. Crini, and E. Lichtfouse, “Advantages and disadvantages of techniques used for wastewater treatment,” Environ. Chem. Lett., vol. 17, no. 1, pp. 145-155, Mar. 2019. https://doi.org/10.1007/s10311-018-0785-9
dc.relation/*ref*/F. Laumann, J. von Kügelgen, and M. Barahona, “Non-linear interlinkages and key objectives amongst the Paris Agreement and the Sustainable Development Goals,” in ICLR 2020 Workshop: Tackling Climate Change with Machine Learning, London, Berlin: Climate Change AI, 2020. https://www.climatechange.ai/papers/iclr2020/9
dc.relation/*ref*/R. Singh et al., “Utilisation of agro-industrial waste for sustainable green production: a review,” Environ. Sustain., vol. 4, no. 4, pp. 619-636, Dec. 2021. https://doi.org/10.1007/s42398-021-00200-x
dc.relation/*ref*/A. G. Capodaglio, A. Callegari, D. Cecconet, and D. Molognoni, “Sustainability of decentralized wastewater treatment technologies,” Water Pract. Technol., vol. 12, no. 2, pp. 463-477, Jun. 2017. https://doi.org/10.2166/wpt.2017.055
dc.relation/*ref*/Y. Liu, and H. Zhao, “Quantitative Evaluation of Policy Based on PMC Index Model: A Case Study of China’s Textile Industry Policy,” Math. Probl. Eng., vol. 2022, no. 1, pp. 1-17, Jun. 2022. https://doi.org/10.1155/2022/1870185
dc.relation/*ref*/M. Tajul Islam, M. A. Al Mamun, A. F. M. Fahad Halim, R. Peila, and D. O. Sánchez Ramírez, “Current trends in textile wastewater treatment—bibliometric review,” Environ. Sci. Pollut. Res., vol. 31, no. 13, pp. 19166-19184, Feb. 2024. https://doi.org/10.1007/s11356-024-32454-3
dc.relation/*ref*/H. Abdulla et al., “An overview of agro-food industry wastewater treatment: a bibliometric analysis and literature review,” Appl. Water Sci., vol. 13, no. 2, p. 47, Feb. 2023. https://doi.org/10.1007/s13201-022-01857-3
dc.relation/*ref*/M. K. Verma, O. C. Sharma, J. I. Mir, W. H. Raja, and S. U. Nabi, “Current Status and Potential of Temperate Fruit Crops for Livelihood and Nutritional Security in India,” Indian J. Plant Genet. Resour., vol. 37, no. 3, pp. 387-403, Aug. 2024. https://ispgr.in/index.php/ijpgr/article/view/2694/2403
dc.relation/*ref*/H. Yang et al., “A comprehensive overview of geopolymer composites: A bibliometric analysis and literature review,” Case Stud. Constr. Mater., vol. 16, p. e00830, Jun. 2022. https://doi.org/10.1016/j.cscm.2021.e00830
dc.relation/*ref*/N. R. Zuanazzi, N. de Castillos Ghisi, and E. Celton Oliveira, “Analysis of global trends and gaps for studies about 2,4-D herbicide toxicity: A scientometric review,” Chemosphere, vol. 241, p. 125016, Feb. 2020. https://doi.org/10.1016/j.chemosphere.2019.125016
dc.relation/*ref*/SCImago, “SJR — Scimago Journal & Country Rank,” scimagojr.com, 2023. Accessed: Dec. 06, 2020. [Online]. Available: http://www.scimagojr.com
dc.relation/*ref*/A. Saeed, M. Sharif, and M. Iqbal, “Application potential of grapefruit peel as dye sorbent: Kinetics, equilibrium and mechanism of crystal violet adsorption,” J. Hazard. Mater., vol. 179, no. 1-3, pp. 564-572, Jul. 2010. https://www.sciencedirect.com/science/article/abs/pii/S030438941000347X
dc.relation/*ref*/P. Sharma, H. Kaur, M. Sharma, and V. Sahore, “A review on applicability of naturally available adsorbents for the removal of hazardous dyes from aqueous waste,” Environ. Monit. Assess., vol. 183, no. 1-4, pp. 151-195, Dec. 2011. https://doi.org/10.1007/s10661-011-1914-0
dc.relation/*ref*/G. Kyzas, and M. Kostoglou, “Green Adsorbents for Wastewaters: A Critical Review,” Materials, vol. 7, no. 1, pp. 333-364, Jan. 2014. https://doi.org/10.3390/ma7010333
dc.relation/*ref*/T. Ahmad, and M. Danish, “Prospects of banana waste utilization in wastewater treatment: A review,” J. Environ. Manage., vol. 206, pp. 330-348, Jan. 2018. https://doi.org/10.1016/j.jenvman.2017.10.061
dc.relation/*ref*/J. Wu, J. Yang, P. Feng, G. Huang, C. Xu, and B. Lin, “High-efficiency removal of dyes from wastewater by fully recycling litchi peel biochar,” Chemosphere, vol. 246, p. 125734, May. 2020. https://doi.org/10.1016/j.chemosphere.2019.125734
dc.relation/*ref*/N. Hussain Solangi, J. Kumar, S. Ali Mazari, S. Ahmed, N. Fatima, and N. Mujawar Mubarak, “Development of fruit waste derived bio-adsorbents for wastewater treatment: A review,” J. Hazard. Mater., vol. 416, p. 125848, Aug. 2021. https://doi.org/10.1016/j.jhazmat.2021.125848
dc.relation/*ref*/C. Bhattacharjee, S. Dutta, and V. K. Saxena, “A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent,” Environ. Adv., vol. 2, p. 100007, Dec. 2020. https://doi.org/10.1016/j.envadv.2020.100007
dc.relation/*ref*/E. Misran, O. Bani, E. M. Situmeang, and A. Suciani Purba, “Banana stem based activated carbon as a low-cost adsorbent for methylene blue removal: Isotherm, kinetics, and reusability,” Alexandria Eng. J., vol. 61, no. 3, pp. 1946-1955, Mar. 2022. https://doi.org/10.1016/j.aej.2021.07.022
dc.relation/*ref*/S. Marković, A. Stanković, Z. Lopičić, S. Lazarević, M. Stojanović, and D. Uskoković, “Application of raw peach shell particles for removal of methylene blue,” J. Environ. Chem. Eng., vol. 3, no. 2, pp. 716-724, Jun. 2015. https://doi.org/10.1016/j.jece.2015.04.002
dc.relation/*ref*/Z. Zhan Loh et al., “Shifting from Conventional to Organic Filter Media in Wastewater Biofiltration Treatment: A Review,” Appl. Sci., vol. 11, no. 18, p. 8650, Sep. 2021. https://doi.org/10.3390/app11188650
dc.relation/*ref*/A. Bhatnagar, M. Sillanpää, and A. Witek-Krowiak, “Agricultural waste peels as versatile biomass for water purification – A review,” Chem. Eng. J., vol. 270, pp. 244-271, Jun. 2015. https://doi.org/10.1016/j.cej.2015.01.135
dc.relation/*ref*/C. E. Almeida-Naranjo et al., “From Renewable Biomass to Water Purification Systems: Oil Palm Empty Fruit Bunch as Bio-Adsorbent for Domestic Wastewater Remediation and Methylene Blue Removal,” Water, vol. 15, no. 23, p. 4116, Nov. 2023. https://doi.org/10.3390/w15234116
dc.relation/*ref*/S. Mishra, L. Cheng, and A. Maiti, “The utilization of agro-biomass/byproducts for effective bio-removal of dyes from dyeing wastewater: A comprehensive review,” J. Environ. Chem. Eng., vol. 9, no. 1, p. 104901, Feb. 2021. https://doi.org/10.1016/j.jece.2020.104901
dc.relation/*ref*/Prateek, P. Kumar, R. Kumar Gupta, V. Chandra Srivastava, I. Deo Mall, and U. Lavrenčič Štangar, “Agricultural waste for the production of biobased products for remediation of hydroquinone from wastewater,” J. Indian Chem. Soc., vol. 101, no. 3, p. 101131, Mar. 2024. https://doi.org/10.1016/j.jics.2024.101131
dc.relation/*ref*/R. Rehman et al., “Isothermal and kinetic investigation of sorption efficacy of titania and bentonite nanocomposite for brilliant green dye removal for wastewater treatment,” J. Dispers. Sci. Technol., vol. 46, no. 10, pp. 1-11, Apr. 2024. https://doi.org/10.1080/01932691.2024.2334006
dc.relation/*ref*/G. V. Serban et al., “Removal Efficiency and Adsorption Kinetics of Methyl Orange from Wastewater by Commercial Activated Carbon,” Sustain., vol. 15, no. 17, p. 12939, Aug. 2023. https://doi.org/10.3390/su151712939
dc.relation/*ref*/B. Khabiri, M. Ferdowsi, G. Buelna, J. P. Jones, and M. Heitz, “Bioelimination of low methane concentrations emitted from wastewater treatment plants: a review,” Crit. Rev. Biotechnol., vol. 42, no. 3, pp. 450-467, Apr. 2022. https://doi.org/10.1080/07388551.2021.1940830
dc.relation/*ref*/S. Reddy, and J. W. Osborne, “Biodegradation and biosorption of Reactive Red 120 dye by immobilized Pseudomonas guariconensis: Kinetic and toxicity study,” Water Environ. Res., vol. 92, no. 8, pp. 1230-1241, Aug. 2020. https://doi.org/10.1002/wer.1319
dc.relation/*ref*/U. A. Edet, and A. O. Ifelebuegu, “Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste,” Processes, vol. 8, no. 6, p. 665, Jun. 2020. https://doi.org/10.3390/pr8060665
dc.relation/*ref*/M. Benjelloun, Y. Miyah, G. Akdemir Evrendilek, F. Zerrouq, and S. Lairini, “Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types,” Arab. J. Chem., vol. 14, no. 4, p. 103031, Apr. 2021. https://doi.org/10.1016/j.arabjc.2021.103031
dc.relation/*ref*/R. Saldaña Escorcia, and J. K. Castillo Gámez, “Alternativas para la estabilización de lodos generados en estaciones depuradoras de aguas residuales desde un enfoque sistémico: una revisión,” Rev. Investig. Agrar. y Ambient., vol. 13, no. 1, pp. 175-194, Dec. 2021. https://doi.org/10.22490/21456453.4504
dc.relation/*ref*/P. Andreo-Martínez, V. M. Ortiz-Martínez, N. García-Martínez, A. Pérez de los Ríos, F. J. Hernández-Fernández, and J. Quesada-Medina, “Production of biodiesel under supercritical conditions: State of the art and bibliometric analysis,” Appl. Energy, vol. 264, p. 114753, Apr. 2020. https://doi.org/10.1016/j.apenergy.2020.114753
dc.relation/*ref*/F. López-Muñoz et al., “A bibliometric analysis of scientific production on atypical antipsychotic drugs from Italy.,” Riv. Psichiatr., vol. 52, no. 6, pp. 236-246, Nov-Dec. 2017. https://doi.org/10.1708/2846.28727
dc.relation/*ref*/D. H. Da Silva Santos et al., “Regeneration of dye-saturated activated carbon through advanced oxidative processes: A review,” Heliyon, vol. 8, no. 8, p. e10205, Aug. 2022. https://doi.org/10.1016/j.heliyon.2022.e10205
dc.relation/*ref*/B. M. Thamer, F. A. Al-aizari, and H. S. Abdo, “Enhanced Adsorption of Textile Dyes by a Novel Sulfonated Activated Carbon Derived from Pomegranate Peel Waste: Isotherm, Kinetic and Thermodynamic Study,” Molecules, vol. 28, no. 23, p. 7712, Nov. 2023. https://doi.org/10.3390/molecules28237712
dc.relation/*ref*/E. Rápó, and S. Tonk, “Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021),” Molecules, vol. 26, no. 17, p. 5419, Sep. 2021. https://doi.org/10.3390/molecules26175419
dc.relation/*ref*/Momina, S. Mohammad, and I. Suzylawati, “Study of the adsorption/desorption of MB dye solution using bentonite adsorbent coating,” J. Water Process Eng., vol. 34, p. 101155, Apr. 2020. https://doi.org/10.1016/j.jwpe.2020.101155
dc.relation/*ref*/İ. Şentürk, and M. Alzein, “Adsorption of Acid Violet 17 onto Acid-Activated Pistachio Shell: Isotherm, Kinetic and Thermodynamic Studies,” Acta Chim. Slov., vol. 67, no. 1, pp. 55-69, Mar. 2020. https://doi.org/10.17344/acsi.2019.5195
dc.relation/*ref*/E. Freitas Diogo Januário, T. Basso Vidovix, L. Alonso de Araújo, L. Bergamasco Beltran, R. Bergamasco, and A. Marquetotti Salcedo Vieira, “Investigation of Citrus reticulata peels as an efficient and low-cost adsorbent for the removal of safranin orange dye,” Environ. Technol., vol. 43, no. 27, pp. 4315-4329, Dec. 2022. https://doi.org/10.1080/09593330.2021.1946601
dc.relation/*ref*/A. B. Abdel-Aziz et al., “Bio-inspired adsorption sheets from waste material for anionic methyl orange dye removal,” SN Appl. Sci., vol. 5, no. 12, p. 371, Dec. 2023. https://doi.org/10.1007/s42452-023-05600-8
dc.relation/*ref*/J. Gubitosa, V. Rizzi, P. Fini, S. Nuzzo, and P. Cosma, “Regenerable Kiwi Peels as an Adsorbent to Remove and Reuse the Emerging Pollutant Propranolol from Water,” Processes, vol. 10, no. 7, p. 1417, Jul. 2022. https://doi.org/10.3390/pr10071417
dc.relation/*ref*/H. Patel, “Review on solvent desorption study from exhausted adsorbent,” J. Saudi Chem. Soc., vol. 25, no. 8, p. 101302, Aug. 2021. https://doi.org/10.1016/j.jscs.2021.101302
dc.relation/*ref*/G. Z. Kyzas, J. Fu, and K. A. Matis, “The Change from Past to Future for Adsorbent Materials in Treatment of Dyeing Wastewaters.,” Materials, vol. 6, no. 11, pp. 5131-5158, Nov. 2013. https://doi.org/10.3390/ma6115131
dc.relation/*ref*/A. Srinivasan, and T. Viraraghavan, “Decolorization of dye wastewaters by biosorbents: A review,” J. Environ. Manage., vol. 91, no. 10, pp. 1915-1929, Oct. 2010. https://doi.org/10.1016/j.jenvman.2010.05.003
dc.relation/*ref*/M. Ahmaruzzaman, and R. Amin Reza, “Decontamination of cationic and anionic dyes in single and binary mode from aqueous phase by mesoporous pulp waste,” Environ. Prog. Sustain. Energy, vol. 34, no. 3, pp. 724-735, May. 2015. https://doi.org/10.1002/ep.12055
dc.relation/*ref*/L. Ifa, T. Syarif, S. Sartia, J. Juliani, N. Nurdjannah, and H. S. Kusuma, “Techno-economics of coconut coir bioadsorbent utilization on free fatty acid level reduction in crude palm oil,” Heliyon, vol. 8, no. 3, p. e09146, Mar. 2022. https://doi.org/10.1016/j.heliyon.2022.e09146
dc.relation/*ref*/Y. Gopalakrishnan et al., “Removal of Basic Brown 16 from Aqueous Solution Using Durian Shell Adsorbent, Optimisation and Techno-Economic Analysis,” Sustain., vol. 12, no. 21, p. 8928, Oct. 2020. https://doi.org/10.3390/su12218928
dc.relation/*ref*/T. Assefa Aragaw, and F. Masengiaw Bogale, “Biomass-Based Adsorbents for Removal of Dyes From Wastewater: A Review,” Front. Environ. Sci., vol. 9, Dec. 2021. https://doi.org/10.3389/fenvs.2021.764958
dc.relation/*ref*/S. Praveen, R. Gokulan, T. Bhagavathi Pushpa, and J. Jegan, “Techno-economic feasibility of biochar as biosorbent for basic dye sequestration,” J. Indian Chem. Soc., vol. 98, no. 8, p. 100107, Aug. 2021. https://doi.org/10.1016/j.jics.2021.100107
dc.relation/*ref*/D. L. Gómez-Aguilar, J. P. Rodríguez-Miranda, and O. J. Salcedo-Parra, “Fruit Peels as a Sustainable Waste for the Biosorption of Heavy Metals in Wastewater: A Review,” Molecules, vol. 27, no. 7, Mar. 2022. https://doi.org/10.3390/molecules27072124
dc.relation/*ref*/Y. Jari, N. Roche, M. Chaker Necibi, S. El Hajjaji, D. Dhiba, and A. Chehbouni, “Emerging Pollutants in Moroccan Wastewater: Occurrence, Impact, and Removal Technologies,” J. Chem., vol. 2022, p. 727857, pp. 1-24, Jan. 2022. https://doi.org/10.1155/2022/9727857
dc.relation/*ref*/I. Haddaoui, and J. Mateo-Sagasta, “A review on occurrence of emerging pollutants in waters of the MENA region,” Environ. Sci. Pollut. Res., vol. 28, no. 48, pp. 68090-68110, Dec. 2021. https://doi.org/10.1007/s11356-021-16558-8
dc.relation/*ref*/M. Zbair et al., “Toward new benchmark adsorbents: preparation and characterization of activated carbon from argan nut shell for bisphenol A removal,” Environ. Sci. Pollut. Res., vol. 25, no. 2, pp. 1869-1882, Jan. 2018. https://doi.org/10.1007/s11356-017-0634-6
dc.relation/*ref*/A. B. Hernández-Abreu et al., “Enhanced removal of the endocrine disruptor compound Bisphenol A by adsorption onto green-carbon materials. Effect of real effluents on the adsorption process,” J. Environ. Manage., vol. 266, p. 110604, Jul. 2020. https://doi.org/10.1016/j.jenvman.2020.110604
dc.relation/*ref*/M. Belhachemi, and S. Djelaila, “Removal of Amoxicillin Antibiotic from Aqueous Solutions by Date Pits Activated Carbons,” Environ. Process., vol. 4, no. 3, pp. 549-561, Sep. 2017. https://doi.org/10.1007/s40710-017-0245-8
dc.relation/*ref*/W. Wang, R. Kang, Y. Yin, S. Tu, and L. Ye, “Two-step pyrolysis biochar derived from agro-waste for antibiotics removal: Mechanisms and stability,” Chemosphere, vol. 292, p. 133454, Apr. 2022. https://doi.org/10.1016/j.chemosphere.2021.133454
dc.relation/*ref*/A. Ashiq, N. M. Adassooriya, B. Sarkar, A. U. Rajapaksha, Y. S. Ok, and M. Vithanage, “Municipal solid waste biochar-bentonite composite for the removal of antibiotic ciprofloxacin from aqueous media,” J. Environ. Manage., vol. 236, pp. 428-435, Apr. 2019. https://doi.org/10.1016/j.jenvman.2019.02.006
dc.relation/*ref*/H. M. Hamadeen, and E. A. Elkhatib, “New nanostructured activated biochar for effective removal of antibiotic ciprofloxacin from wastewater: Adsorption dynamics and mechanisms,” Environ. Res., vol. 210, p. 112929, Jul. 2022. https://doi.org/10.1016/j.envres.2022.112929
dc.relation/*ref*/X. Fan, Z. Qian, J. Liu, N. Geng, J. Hou, and D. Li, “Investigation on the adsorption of antibiotics from water by metal loaded sewage sludge biochar,” Water Sci. Technol., vol. 83, no. 3, pp. 739-750, Feb. 2021. https://doi.org/10.2166/wst.2020.578
dc.relation/*ref*/J. Jegan, S. Praveen, T. B. Pushpa, and R. Gokulan, “Biodecolorization of Basic Violet 03 Using Biochar Derived from Agricultural Wastes: Isotherm and Kinetics,” J. Biobased Mater. Bioenergy, vol. 14, no. 3, pp. 316-326, Jun. 2020. https://doi.org/10.1166/jbmb.2020.1969
dc.relation/*ref*/J. Jegan, S. Praveen, T. Bhagavathi Pushpa, and R. Gokulan, “Sorption kinetics and isotherm studies of cationic dyes using groundnut (arachis hypogaea) shell derived biochar a low-cost adsorbent,” Appl. Ecol. Environ. Res., vol. 18, no. 1, pp. 1925-1939, Apr. 2020. https://doi.org/10.15666/aeer/1801_19251939
dc.relation/*ref*/S. Prabha Viswanthan et al., “Removal efficiency of methylene blue from aqueous medium using biochar derived from Phragmites karka, a highly invasive wetland weed,” Biomass Convers. Biorefinery, vol. 12, no. 8, pp. 3257-3273, Aug. 2022. https://doi.org/10.1007/s13399-020-00877-w
dc.relation/*ref*/M. Dong et al., “Biochar for the Removal of Emerging Pollutants from Aquatic Systems: A Review,” Int. J. Environ. Res. Public Health, vol. 20, no. 3, p. 1679, Jan. 2023. https://doi.org/10.3390/ijerph20031679
dc.relation/*ref*/N. Cheng et al., “Adsorption of emerging contaminants from water and wastewater by modified biochar: A review,” Environ. Pollut., vol. 273, p. 116448, Mar. 2021. https://doi.org/10.1016/j.envpol.2021.116448
dc.relation/*ref*/Z. Ahmad Ganie, N. Khandelwal, E. Tiwari, N. Singh, and G. Krishna Darbha, “Biochar-facilitated remediation of nanoplastic contaminated water: Effect of pyrolysis temperature induced surface modifications,” J. Hazard. Mater., vol. 417, p. 126096, Sep. 2021. https://doi.org/10.1016/j.jhazmat.2021.126096
dc.relation/*ref*/J. Wang, C. Sun, Q.-X. Huang, Y. Chi, and J.-H. Yan, “Adsorption and thermal degradation of microplastics from aqueous solutions by  mg/Zn modified magnetic biochars,” J. Hazard. Mater., vol. 419, p. 126486, Oct. 2021. https://doi.org/10.1016/j.jhazmat.2021.126486
dc.relation/*ref*/R. Kumar et al., “Adsorptive behavior of micro(nano)plastics through biochar: Co-existence, consequences, and challenges in contaminated ecosystems,” Sci. Total Environ., vol. 856, no. Part 1, p. 159097, Jan. 2023. https://doi.org/10.1016/j.scitotenv.2022.159097
dc.relation/*ref*/P. Mulindwa, J. S. Kasule, F. Nantaba, J. Wasswa, and A. J. Expósito, “Bioadsorbents for removal of microplastics from water ecosystems: a review,” Int. J. Sustain. Eng., vol. 17, no. 1, pp. 582-599, Dec. 2024. https://doi.org/10.1080/19397038.2024.2374003
dc.relation/*ref*/
dc.rightsDerechos de autor 2025 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 28 No. 64 (2025); e3455en-US
dc.sourceTecnoLógicas; Vol. 28 Núm. 64 (2025); e3455es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectanálisis coste-beneficioes-ES
dc.subjectcolorantes orgánicoses-ES
dc.subjecteconomía circulares-ES
dc.subjectremediaciónes-ES
dc.subjectresiduos alimentarioses-ES
dc.subjectcost benefit analysisen-US
dc.subjectorganic dyesen-US
dc.subjectcircular economyen-US
dc.subjectremediationen-US
dc.subjectfood wasteen-US
dc.titleBibliometric Review of Wastewater Treatment Using Fruit Residues as a Means of Dye Adsorption: An Overviewen-US
dc.titleRevisión bibliométrica del tratamiento de las aguas residuales mediante residuos frutales como medio de adsorción de colorantes: una visión globales-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES

Archivos