Computational Thinking in the University Context: A Literature Review of Assessment Instruments
dc.creator | Corrales-Álvarez, Milena | |
dc.creator | Muñoz-Muñoz, Ángela María | |
dc.creator | Cardona-Torres, Sergio Augusto | |
dc.date | 2025-09-16 | |
dc.date.accessioned | 2025-10-01T23:53:17Z | |
dc.description | Computational thinking (CT) is recognized as a skill that citizens of the current era must develop to perform effectively in various contexts. This highlights the need to incorporate it at all educational levels to strengthen the teaching, learning, and assessment processes. Considering assessment as one of the key processes to support CT, it is necessary to identify instruments with psychometric properties for its measurement. This systematic review aimed to identify and analyze the different instruments designed to assess CT within the university community (university students, future teachers, current teachers, and adults). The methodology involved a search from 2006 to February 2024 and the use of information sources Web of Science (WoS) and Scopus. A total of 266 articles were found, of which 27 met the inclusion criteria, and 17 instruments were identified that assess CT in the university community. The results showed that these instruments come in various formats, with scales and tests being the most common. The most frequently evaluated variables were algorithmic thinking, abstraction, and decomposition. Regarding psychometric properties, there was limited evidence on the procedures used for instrument validation. The findings revealed an open space for the development of instruments aimed at the university population that allow for the measurement of CT from dimensions beyond the cognitive one. In conclusion, it is identified that the focus of research has been on the assessment of CT skills in school populations and little evaluated in the university community. | en-US |
dc.description | El pensamiento computacional (PC) es reconocido como una habilidad que los ciudadanos de la era actual deben desarrollar para desempeñarse en diferentes contextos. Esto advierte la necesidad de incorporarlo en todos los niveles educativos para fortalecer los procesos de enseñanza, aprendizaje y evaluación. Considerando la evaluación como uno de los procesos importantes para fundamentar el PC, se hace necesario el reconocimiento de instrumentos que cuenten con características psicométricas para su medición. Esta revisión sistemática tuvo como objetivo identificar y analizar los diferentes instrumentos diseñados para la evaluación del PC en la comunidad universitaria (estudiantes universitarios, futuros docentes, docentes y adultos) El periodo de búsqueda comprendió del 2006 a febrero de 2024. La metodología empleada consistió en el uso de las fuentes de información Web of Science (WoS) y Scopus. Se encontraron 266 artículos, de los cuales se seleccionaron 27 artículos que cumplían con los criterios de inclusión y de los cuales 17 instrumentos evalúan el PC en la comunidad universitaria. Con los resultados se identificó que estos instrumentos se presentan en diferentes formatos destacándose la escala y las pruebas. Las variables evaluadas con mayor frecuencia son el pensamiento algorítmico, la abstracción y la descomposición. Con respecto a las propiedades psicométricas se identificaron escasas evidencias sobre los procedimientos aplicados para la validación de los instrumentos. Los resultados obtenidos mostraron un espacio abierto para la construcción de instrumentos orientados a población universitaria que permitan la medición del PC desde dimensiones adicionales a la cognitiva. Como conclusión se identifica que el enfoque de las investigaciones se ha centrado en la valoración de habilidades de PC en poblaciones escolares y poco evaluado en la comunidad universitaria. | es-ES |
dc.format | application/pdf | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3394 | |
dc.identifier | 10.22430/22565337.3394 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12622/7944 | |
dc.language | eng | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | es-ES |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3394/3731 | |
dc.relation | /*ref*/M. Téllez, “Pensamiento computacional: una competencia del siglo XXI,” Educ. Super., vol. 6, no. 1, pp. 23-32, Mar. 2019. http://www.scielo.org.bo/scielo.php?pid=S2518-82832019000100007&script=sci_arttext | |
dc.relation | /*ref*/J. M. Wing, “Computational thinking,” Communic. ACM, vol. 49, no. 3, pp. 33-35, Mar. 2006. https://doi.org/10.1145/1118178.1118215 | |
dc.relation | /*ref*/M. Román González, “Codigoalfabetización y pensamiento computacional en Educación Primaria y Secundaria: validación de un instrumento y evaluación de programas,” Tesis doctoral, Universidad Nacional de Educación a Distancia, Madrid, España, 2016. https://hdl.handle.net/20.500.14468/18800 | |
dc.relation | /*ref*/C. Selby, and J. Woollard, “Computational Thinking: The Developing Definition,” University of Southampton, 2013. [Online]. Available: https://eprints.soton.ac.uk/356481/ | |
dc.relation | /*ref*/C. C. Selby, “Relationships: Computational thinking, Pedagogy of programming, And Bloom’s taxonomy,” in ACM Int. Conf. Proceeding Ser., London, UK, Nov. 9-11, 2015, pp. 80-87. https://doi.org/10.1145/2818314.2818315 | |
dc.relation | /*ref*/A. Csizmadia et al., Computational Thinking: A Guide for Teachers. London, UK: Computing at School, 2015. https://www.researchgate.net/publication/327302966__ | |
dc.relation | /*ref*/O. Astrachan, S. Hambrusch, J. Peckham, and A. Settle, “The present and future of computational thinking,” ACM SIGCSE Bull., vol. 41, no. 1, pp. 549-550, Mar. 2009. https://doi.org/10.1145/1539024.1509053 | |
dc.relation | /*ref*/F. J. García-Peñalvo, D. Reimann, M. Tuul, A. Rees, and I. Jormanainen, Taccle 3, O5: An overview of the most relevant literature on coding and computational thinking with emphasis on the relevant issues for teachers. Belgium: Taccle3 Consortium, 2016. https://doi.org/10.5281/zenodo.165123 | |
dc.relation | /*ref*/F. Llorens Largo, F. J. García Peñalvo, X. Molero Prieto, and E. Vendrell Vidal, “La enseñanza de la informática, la programación y el pensamiento computacional en los estudios preuniversitarios,” Educ. Knowl. Soc., vol. 18, no. 2, pp. 7-17, Aug. 2017. https://doi.org/10.14201/eks2017182717 | |
dc.relation | /*ref*/M. Román-González, J. C. Pérez-González, and C. Jiménez-Fernández, “Which cognitive abilities underlie computational thinking? Criterion validity of the Computational Thinking Test,” Comput. Human Behav., vol. 72, pp. 678-691, Jul. 2017. https://doi.org/10.1016/j.chb.2016.08.047 | |
dc.relation | /*ref*/M.-J. Tsai, J.-C. Liang, and C.-Y. Hsu, “The Computational Thinking Scale for Computer Literacy Education,” J. Educ. Comput. Res., vol. 59, no. 4, pp. 579-602, Nov. 2021. https://doi.org/10.1177/0735633120972356 | |
dc.relation | /*ref*/A. V. Aho, “Computation and computational thinking,” Comput. J., vol. 55, no. 7, pp. 833-835, Jul. 2012. https://doi.org/10.1093/comjnl/bxs074 | |
dc.relation | /*ref*/A. Piatti et al., “The CT-cube: A framework for the design and the assessment of computational thinking activities,” Comput. Hum. Behav. Reports, vol. 5, p. 100166 Mar. 2022. https://doi.org/10.1016/j.chbr.2021.100166 | |
dc.relation | /*ref*/L. Sun, X. You, and D. Zhou, “Evaluation and development of STEAM teachers’ computational thinking skills: Analysis of multiple influential factors,” Educ. Inf. Technol., vol. 28, pp. 14493-14527, Apr. 2023. https://doi.org/10.1007/s10639-023-11777-7 | |
dc.relation | /*ref*/C. Aumgri, and S. Petsangsri, “Computational thinking for preservice teachers in Thailand: A confirmatory factor analysis,” Espacios, vol. 40, no. 29, pp. 6-7, Sep. 2019. https://www.revistaespacios.com/a19v40n29/a19v40n29p12.pdf | |
dc.relation | /*ref*/S. Kılıç, S. Gökoğlu, and M. Öztürk, “A Valid and Reliable Scale for Developing Programming-Oriented Computational Thinking,” J. Educ. Comput. Res., vol. 59, no. 2, pp. 257-286, Oct. 2020. https://doi.org/10.1177/0735633120964402 | |
dc.relation | /*ref*/D. E. Sondakh, K. Osman, and S. Zainudin, “A Proposal For Holistic Assessment Of Computational Thinking for Undergraduate: Content Validity,” vol. 9, no. 1, pp. 33-50, Jan. 2020. https://doi.org/10.12973/eu-jer.9.1.33 | |
dc.relation | /*ref*/C. Lu, R. Macdonald, B. Odell, V. Kokhan, C. Demmans Epp, and M. Cutumisu, “A scoping review of computational thinking assessments in higher education,” J. Comput. High. Educ., vol. 34, no. 2, pp. 416-461, Jan. 2022. https://doi.org/10.1007/s12528-021-09305-y | |
dc.relation | /*ref*/M. Cutumisu, C. Adams, and C. Lu, “A Scoping Review of Empirical Research on Recent Computational Thinking Assessments,” J. Sci. Educ. Technol., vol. 28, no. 6, pp. 651-676, Nov. 2019. https://doi.org/10.1007/s10956-019-09799-3 | |
dc.relation | /*ref*/X. Tang, Y. Yin, Q. Lin, R. Hadad, and X. Zhai, “Assessing computational thinking: A systematic review of empirical studies,” Comput. Educ., vol. 148, p. 103798, Apr. 2020. https://doi.org/10.1016/j.compedu.2019.103798 | |
dc.relation | /*ref*/J. Acevedo-Borrega, J. Valverde-Berrocoso, and M. del C. Garrido-Arroyo, “Computational Thinking and Educational Technology: A Scoping Review of the Literature,” Educ. Sci., vol. 12, no. 1, Jan. 2022. https://doi.org/10.3390/educsci12010039 | |
dc.relation | /*ref*/M. Tekdal, “Trends and development in research on computational thinking,” Educ. Inf. Technol., vol. 26, no. 5, pp. 6499-6529, Jun. 2021. https://doi.org/10.1007/s10639-021-10617-w | |
dc.relation | /*ref*/H. İ. Haseskİ, and U. İlİc, “An Investigation of the Data Collection Instruments Developed to Measure Computational Thinking,” vol. 18, no. 2, pp. 297-319, Oct. 2019. https://doi.org/10.15388/infedu.2019.14 | |
dc.relation | /*ref*/A. Anastasi, and S. Urbina, Test Psicológicos. Mex.: Pearson Ed., 1998. | |
dc.relation | /*ref*/L. R. Aiken, Tests psicológicos y evaluación. Mex.: Pearson Ed., 2003. | |
dc.relation | /*ref*/J. Aliaga Tovar, “Psicometria : Tests Psicométricos, Confiabilidad y Validez,” Psicol. Tópicos Actual., vol. 8, pp. 85-108, 2007. https://gc.scalahed.com/recursos/files/r161r/w25645w/Psicometria_Test_%20psicometricos_confiabilidad_validez_RS6.pdf | |
dc.relation | /*ref*/R. J. Cohen, and M. E. Swerdlik, Pruebas y evaluación psicológicas: Introducción a las pruebas y a la medición. McGraw-Hill, 2001. | |
dc.relation | /*ref*/E. Almanasreh, R. Moles, and T. F. Chen, “Evaluation of methods used for estimating content validity,” Res. Soc. Adm. Pharm., vol. 15, no. 2, pp. 214-221, Feb. 2019. https://doi.org/10.1016/j.sapharm.2018.03.066 | |
dc.relation | /*ref*/A. C. Tricco et al., “PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation,” Ann. Intern. Med., vol. 169, no. 7, pp. 467-473, Sep. 2018. https://doi.org/10.7326/M18-0850 | |
dc.relation | /*ref*/N. J. Van Eck, and L. Waltman, VOSviewer Manual. Leiden, NL: Univeristeit Leiden, 2023. https://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.20.pdf | |
dc.relation | /*ref*/V. Dolgopolovas, T. Jevsikova, V. Dagiené, and L. Savulioniené, “Exploration of computational thinking of software engineering novice students based on solving computer science tasks,” Int. J. Eng. Educ., vol. 32, no. 3, pp. 1107-1116, 2016. https://dialnet.unirioja.es/servlet/articulo?codigo=6910621 | |
dc.relation | /*ref*/M. S. Günbatar, and H. Bakırcı, “STEM teaching intention and computational thinking skills of pre-service teachers,” Educ. Inf. Technol., vol. 24, no. 2, pp. 1615-1629, Dec. 2019. https://doi.org/10.1007/s10639-018-9849-5 | |
dc.relation | /*ref*/F. M. Esteve-Mon, J. Adell-Segura, M. Á. Llopis Nebot, G. Valdeolivas Novella, and J. Pacheco Aparicio, “The development of computational thinking in student teachers through an intervention with educational robotics,” J. Inf. Technol. Educ. Innov. Pract., vol. 18, pp. 139-152, 2019. https://doi.org/10.28945/4442 | |
dc.relation | /*ref*/R. Ata, and M. Çevik, “Understanding predictor effects of computational thinking skills and media and technology use and attitudes of pre-service teachers for STEM awareness,” Kedi J. Educ. Policy, vol. 17, no. 1, pp. 99-121, 2020. https://www.researchgate.net/publication/342551812_Understanding_predictor_effects_of_computational_thinking_skills_and_media_and_technology_use_and_attitudes_of_pre-service_teachers_for_STEM_awareness | |
dc.relation | /*ref*/Ü. Çakıroğlu, and S. Kiliç, “Assessing teachers’ PCK to teach computational thinking via robotic programming,” Interact. Learn. Environ., vol. 31, no. 2, pp. 818-835, Sep. 2020. https://doi.org/10.1080/10494820.2020.1811734 | |
dc.relation | /*ref*/F.-H. Tsai, H.-S. Hsiao, K.-C. Yu, and K.-Y. Lin, “Development and effectiveness evaluation of a STEM-based game-design project for preservice primary teacher education,” Int. J. Technol. Des. Educ., vol. 32, no. 5, pp. 2403-2424, Nov. 2022. https://doi.org/10.1007/s10798-021-09702-5 | |
dc.relation | /*ref*/K. Bati, and M. İkbal Yetişir, “Examination of Turkish Middle School STEM Teachers’ Knowledge about Computational Thinking and Views Regarding Information and Communications Technology,” Comput. Sch., vol. 38, no. 1, pp. 57-73, Mar. 2021. https://doi.org/10.1080/07380569.2021.1882206 | |
dc.relation | /*ref*/G. Rodríguez-Abitia, M. S. Ramírez-Montoya, E. O. López-Caudana, and J. M. Romero-Rodríguez, “Factores para el desarrollo del pensamiento computacional en estudiantes de pregrado,” Campus Virt., vol. 10, no. 2, pp. 153-164, Jul. 2021. http://www.uajournals.com/campusvirtuales/journal/19/10.pdf | |
dc.relation | /*ref*/D. C. Boulden, A. Rachmatullah, K. M. Oliver, and E. Wiebe, “Measuring in-service teacher self-efficacy for teaching computational thinking: development and validation of the T-STEM CT,” Educ. Inf. Technol., vol. 26, no. 4, pp. 4663-4689, Mar. 2021. https://doi.org/10.1007/s10639-021-10487-2 | |
dc.relation | /*ref*/V. Amnouychokanant, S. Boonlue, S. Chuathong, and K. Thamwipat, “Online Learning Using Block-based Programming to Foster Computational Thinking Abilities During the COVID-19 Pandemic,” Int. J. Emerg. Technol. Learn., vol. 16, no. 13, pp. 227-247, Jul. 2021. https://doi.org/10.3991/ijet.v16i13.22591 | |
dc.relation | /*ref*/J. Bilbao, E. Bravo, O. García, C. Rebollar, and C. Varela, “Study to find out the perception that first year students in engineering have about the Computational Thinking skills, and to identify possible factors related to the ability of Abstraction,” Heliyon, vol. 7, no. 2, p. e06135, Feb. 2021. https://doi.org/10.1016/j.heliyon.2021.e06135 | |
dc.relation | /*ref*/R. Çakır, H. Şahin, H. Balci, and M. Vergili, “The effect of basic robotic coding in-service training on teachers’ acceptance of technology, self-development, and computational thinking skills in technology use,” J. Comput. Educ., vol. 8, no. 2, pp. 237-265, Jan. 2021. https://doi.org/10.1007/s40692-020-00178-1 | |
dc.relation | /*ref*/O. Kocak, M. Coban, A. Aydin, and N. Cakmak, “The mediating role of critical thinking and cooperativity in the 21st century skills of higher education students,” Think. Ski. Creat., vol. 42, p. 100967, Dec. 2021. https://doi.org/10.1016/j.tsc.2021.100967 | |
dc.relation | /*ref*/Y. Özkan Hidiroglu, and C. Naci Hidiroglu, “The Relationship between Mathematics Teachers’ Mind Types and Computational Thinking Skills,” Pamukkale Üniv. Eğitim Fakültesi Dergisi, vol. 52, pp. 301-325, 2021. https://doi.org/10.9779/pauefd.696511 | |
dc.relation | /*ref*/K.-D. Boom, M. Bower, J. Siemon, and A. Arguel, “Relationships between computational thinking and the quality of computer programs,” Educ. Inf. Technol., vol. 27, no. 6, pp. 8289-8310, Mar. 2022. https://doi.org/10.1007/s10639-022-10921-z | |
dc.relation | /*ref*/M. Cutumisu, C. Adams, F. Glanfield, C. Yuen, and C. Lu, “Using Structural Equation Modeling to Examine the Relationship Between Preservice Teachers’ Computational Thinking Attitudes and Skills,” IEEE Trans. Educ., vol. 65, no. 2, pp. 177-183, May. 2022. https://doi.org/10.1109/TE.2021.3105938 | |
dc.relation | /*ref*/S.-C. Kong, and M. Lai, “Effects of a teacher development program on teachers’ knowledge and collaborative engagement, and students’ achievement in computational thinking concepts,” Br. J. Educ. Technol., vol. 55, no. 2, pp. 489-512, Jul. 2022. https://doi.org/10.1111/bjet.13256 | |
dc.relation | /*ref*/M. Lafuente Martínez, O. Lévêque, I. Benítez, C. Hardebolle, and J. Dehler Zufferey, “Assessing Computational Thinking: Development and Validation of the Algorithmic Thinking Test for Adults,” J. Educ. Comput. Res., vol. 60, no. 6, pp. 1436-1463, Feb. 2022. https://doi.org/10.1177/07356331211057819 | |
dc.relation | /*ref*/B. Hassan Majeed, L. Fouad Jawad, and H. T. Salim Alikirabi, “Computational Thinking (CT) Among University Students,” Int. J. Interact. Mob. Technol., vol. 16, no. 10, pp. 244-252, May. 2022. https://doi.org/10.3991/ijim.v16i10.30043 | |
dc.relation | /*ref*/Ş. Şen, “Relations between preservice teachers’ self-efficacy, computational thinking skills and metacognitive self-regulation,” Eur. J. Psychol. Educ., vol. 38, pp. 1251-1269, Nov. 2022. https://doi.org/10.1007/s10212-022-00651-8 | |
dc.relation | /*ref*/S. Syafril, T. Rahayu, and G. Ganefri, “Prospective science teachers’ self-confidence in computational thonking skills,” J. Pendidik. IPA Indones., vol. 11, no. 1, pp. 119-128, Mar. 2022. https://doi.org/10.15294/jpii.v11i1.33125 | |
dc.relation | /*ref*/X. Zhou, and C. W. Tsai, “The Effects of Socially Shared Regulation of Learning on the Computational Thinking, Motivation, and Engagement in Collaborative Learning by Teaching,” Educ. Inf. Technol., vol. 28, pp. 8135-8152, Dec. 2022. https://doi.org/10.1007/s10639-022-11527-1 | |
dc.relation | /*ref*/A. Rachmatullah, and E. N. Wiebe, “Changes and Sources of Changes of Middle School Teachers’ Self-efficacy for Teaching Science in A Computationally Rich Environment: A Mixed-Methods Study,” J. Sci. Teacher Educ., vol. 34, no. 2, pp. 132-156, Apr. 2022. https://doi.org/10.1080/1046560X.2022.2035990 | |
dc.relation | /*ref*/A. Kaur, and K. Kaur Chahal, “Exploring Personality and Learning Motivation Influences on Students’ Computational Thinking Skills in Introductory Programming Courses,” J. Sci. Educ. Technol., vol. 32, pp. 778-792, May. 2023. https://doi.org/10.1007/s10956-023-10052-1 | |
dc.relation | /*ref*/C. Chookhampaeng, C. Kamha, and S. Chookhampaeng, “Problems and Needs Assessment to Learning Management of Computational Thinking of Teachers at the Lower Secondary Level,” J. Curric. Teach., vol. 12, no. 3, pp. 172-178, May. 2023. https://doi.org/10.5430/jct.v12n3p172 | |
dc.relation | /*ref*/V. J. Shute, C. Sun, and J. Asbell-Clarke, “Demystifying computational thinking,” Educ. Res. Rev., vol. 22, pp. 142-158, Nov. 2017. https://doi.org/10.1016/j.edurev.2017.09.003 | |
dc.relation | /*ref*/D. Weintrop et al., “Defining Computational Thinking for Mathematics and Science Classrooms,” J. Sci. Educ. Technol., vol. 25, no. 1, pp. 127-147, Feb. 2016. https://doi.org/10.1007/s10956-015-9581-5 | |
dc.relation | /*ref*/S. Grover, and R. Pea, “Computational Thinking: A Competency Whose Time Has Come,” in Computer Science Education: Perspectives on Teaching and Learning in School, S. Sentance, E. Barendsen, and C. Schulte, Eds., London: Bloomsbury Academic, 2018, pp 19-38. https://doi.org/10.5040/9781350057142.ch-003 | |
dc.relation | /*ref*/Ö. Korkmaz, R. M. Çaki, and M. Yaşar Özden, “A validity and reliability study of the computational thinking scales (CTS),” Comput. Human Behav., vol. 72, pp. 558-569, Jul. 2017. https://doi.org/10.1016/j.chb.2017.01.005 | |
dc.relation | /*ref*/J. Voogt, P. Fisser, J. Good, P. Mishra, and A. Yadav, “Computational thinking in compulsory education: Towards an agenda for research and practice,” Educ. Inf. Technol., vol. 20, no. 4, pp. 715-728, Jun. 2015. https://doi.org/10.1007/s10639-015-9412-6 | |
dc.relation | /*ref*/A. Yadav, C. Stephenson, and H. Hong, “Computational thinking for teacher education,” Commun. ACM, vol. 60, no. 4, pp. 55-62, Mar. 2017. https://doi.org/10.1145/2994591 | |
dc.relation | /*ref*/M. S. Günbatar, “Computational thinking within the context of professional life: Change in CT skill from the viewpoint of teachers,” Educ. Inf. Technol., vol. 24, no. 5, pp. 2629-2652, Apr. 2019. https://doi.org/10.1007/s10639-019-09919-x | |
dc.relation | /*ref*/S. C. Kong, and M. Lai, “Validating a computational thinking concepts test for primary education using item response theory: An analysis of students’ responses,” Comput. Educ., vol. 187, p. 104562, Oct. 2022. https://doi.org/10.1016/j.compedu.2022.104562 | |
dc.relation | /*ref*/L. Sun, L. Hu, D. Zhou, and W. Yang, “Evaluation and developmental suggestions on undergraduates’ computational thinking: a theoretical framework guided by Marzano’s new taxonomy,” Interact. Learn. Environ., vol. 31, no. 10, pp. 6588-6610, Mar. 2022. https://doi.org/10.1080/10494820.2022.2042311 | |
dc.relation | /*ref*/R. Çakır, Ö. Korkmaz, Ö. İdil, and F. Uğur Erdoğmuş, “The effect of robotic coding education on preschoolers’ problem solving and creative thinking skills,” Think. Ski. Creat., vol. 40, p. 100812, Jun. 2021. https://doi.org/10.1016/j.tsc.2021.100812 | |
dc.relation | /*ref*/ | |
dc.rights | Derechos de autor 2025 TecnoLógicas | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0 | es-ES |
dc.source | TecnoLógicas; Vol. 28 No. 64 (2025); e3394 | en-US |
dc.source | TecnoLógicas; Vol. 28 Núm. 64 (2025); e3394 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | habilidades computacionales | es-ES |
dc.subject | medición de habilidades | es-ES |
dc.subject | propiedades psicométricas | es-ES |
dc.subject | análisis bibliométrico | es-ES |
dc.subject | educación superior | es-ES |
dc.subject | computational skills | en-US |
dc.subject | skills assessment | en-US |
dc.subject | psychometric properties | en-US |
dc.subject | bibliometric analysis | en-US |
dc.subject | higher education | en-US |
dc.title | Computational Thinking in the University Context: A Literature Review of Assessment Instruments | en-US |
dc.title | Pensamiento computacional en el contexto universitario: Revisión de la literatura de instrumentos de evaluación | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Review Article | en-US |
dc.type | Artículos de revisión | es-ES |