Numerical Simulation of an Oscillating Water Column for the Wave Conditions of the Colombian Pacific Ocean

dc.creatorParra-Quintero, Juan
dc.creatorRubio-Clemente, Ainhoa
dc.creatorChica, Edwin
dc.date2023-07-27
dc.date.accessioned2025-10-01T23:52:52Z
dc.descriptionOcean wave energy is one of the least exploited sources in Colombia. The oscillating water column (OWC) can be a sustainable technology to generate electricity in hard-to-reach areas using the energy available in the Pacific Ocean. Currently, Colombia lacks the development of these devices; however, there are hopes focused on wave energy as a feasible alternative to provide renewable energy in non-interconnected zones (NIZ) in the country. In this work, it is intended to numerically simulate an OWC for the Colombian Pacific Ocean conditions, so computational fluid dynamics was used through ANSYS Fluent program to model an onshore OWC. This research reaches the numerical simulation stage, however, it can be taken to small-scale experimental studies. The maximum chamber efficiency and the media free surface velocity of the water column for the studied geometry were 66.81 % and 0.118 m/s, respectively. Sensitivity analysis of the geometrical factors describing the resonant chamber of the device against various sea conditions could be of crucial interest to improve its hydrodynamic efficiency.en-US
dc.descriptionLa energía de las olas es una de las fuentes menos explotadas en Colombia. La columna de agua oscilante (OWC, por siglas en inglés) puede ser una tecnología sostenible para generar electricidad en zonas de difícil acceso utilizando la energía disponible en el océano Pacífico. En la actualidad, Colombia carece del desarrollo de estos dispositivos; sin embargo, hay esperanzas centradas en la energía de las olas como alternativa factible para proporcionar energía renovable en las zonas no interconectadas (ZNI) del país. En este trabajo, se pretende simular numéricamente una OWC para las condiciones del océano Pacifico colombiano, por lo que se empleó la dinámica de fluidos computacional a través del programa ANSYS Fluent para modelar una OWC ubicada en la orilla. Esta investigación alcanza la etapa de simulación numérica; sin embargo, puede ser llevada a estudios experimentales a pequeña escala. La eficiencia máxima de la cámara resonante simulada y la velocidad media de la superficie libre de la columna de agua para la geometría estudiada fueron 66.81 % y 0.118 m/s, respectivamente. El análisis de sensibilidad de los factores geométricos que describen la cámara resonante del dispositivo frente a diversas condiciones de mar podría ser de crucial interés para mejorar su eficiencia hidrodinámica.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2630
dc.identifier10.22430/22565337.2630
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7863
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2630/2903
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2630/2911
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2630/3129
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2630/3406
dc.relation/*ref*/O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, and M. Pourkashanian, “Renewable energy production and demand dataset for the energy system of Colombia,” Data Br., vol. 28, p. 105084, Feb. 2020. https://doi.org/10.1016/j.dib.2019.105084
dc.relation/*ref*/A. Perez and J. J. Garcia-Rendon, “Integration of non-conventional renewable energy and spot price of electricity: A counterfactual analysis for Colombia,” Renew. Energy, vol. 167, pp. 146–161, Apr. 2021. https://doi.org/10.1016/j.renene.2020.11.067
dc.relation/*ref*/A. M. Rosso-Cerón and V. Kafarov, “Barriers to social acceptance of renewable energy systems in Colombia”, Current Opinion in Chemical Engineering, vol. 10, pp. 103-110, Nov. 2015. https://doi.org/10.1016/j.coche.2015.08.003
dc.relation/*ref*/S. A. Gil Ruiz, J. E. Cañón Barriga, and J. A. Martínez, “Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data,” Renew. Energy, vol. 172, pp. 158–176, Jul. 2021. https://doi.org/10.1016/j.renene.2021.03.033
dc.relation/*ref*/J. G. Rueda-Bayona, A. Guzmán, J. J. Cabello Eras, R. Silva-Casarín, E. Bastidas-Arteaga, and J. Horrillo-Caraballo, “Renewables energies in Colombia and the opportunity for the offshore wind technology,” J. Clean. Prod., vol. 220, pp. 529–543, May. 2019. https://doi.org/10.1016/j.jclepro.2019.02.174
dc.relation/*ref*/Unidad de Planeación Minero-Energética, “Plan Energético Nacional 2020-2050”. Colombia, Feb. 2020. https://www1.upme.gov.co/DemandaEnergetica/UPME_Presentacion_PEN_V48.pdf
dc.relation/*ref*/D. Clemente, P. Rosa-Santos, and F. Taveira-Pinto, “On the potential synergies and applications of wave energy converters: A review,” Renew. Sustain. Energy Rev., vol. 135, p. 110162, Jan. 2021. https://doi.org/10.1016/j.rser.2020.110162
dc.relation/*ref*/Ministerio de Minas y Energía, “La transición energética de colombia. Memorias al Congreso,” Colombia, Jun. 2020. https://www.minenergia.gov.co/documents/5744/Memorias_al_Congreso_2019-2020.pdf
dc.relation/*ref*/S. S. Prakash, et al., “Wave Energy Converter: A Review of Wave Energy Conversion Technology,” 3rd Asia-Pacific World Congress on Computer Science and Engineering, Nadi, Fiji, 2016, pp. 71-77. https://doi.org/10.1109/APWC-on-CSE.2016.023
dc.relation/*ref*/J. D. Restrepo and S. A. López, “Morphodynamics of the Pacific and Caribbean deltas of Colombia, South America,” J. South Am. Earth Sci., vol. 25, no. 1, pp. 1–21, Feb. 2008. https://doi.org/10.1016/j.jsames.2007.09.002
dc.relation/*ref*/J. Portilla, A. L. Caicedo, R. Padilla-Hernández, and L. Cavaleri, “Spectral wave conditions in the Colombian Pacific Ocean,” Ocean Model., vol. 92, pp. 149–168, Aug. 2015. https://doi.org/10.1016/j.ocemod.2015.06.005
dc.relation/*ref*/N. Borduas and N. M. Donahue, “The Natural Atmosphere,” Green Chemistry, pp. 131-150, 2018. https://doi.org/10.1016/B978-0-12-809270-5.00006-6
dc.relation/*ref*/K. O. Yoro and M. O. Daramola, “CO2 emission sources, greenhouse gases, and the global warming effect,” Advances in Carbon Capture, pp. 3-28, 2020. https://doi.org/10.1016/B978-0-12-819657-1.00001-3
dc.relation/*ref*/I. Simonetti, L. Cappietti, H. Elsafti, and H. Oumeraci, “Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric OWC devices: A numerical study,” Energy, vol. 139, pp. 1197-1209, Nov. 2017. https://doi.org/10.1016/j.energy.2017.08.033
dc.relation/*ref*/J. Lekube, A. J. Garrido, I. Garrido, E. Otaola, and J. Maseda, “Flow Control in Wells Turbines for Harnessing Maximum Wave Power,” Sensors, vol. 18, no. 2, p. 535, Feb. 2018. https://doi.org/10.3390/s18020535
dc.relation/*ref*/R. Ahamed, K. McKee, and I. Howard, “Advancements of wave energy converters based on power take off (PTO) systems: A review,” Ocean Eng., vol. 204, p. 107248, Mar. 2020. https://doi.org/10.1016/j.oceaneng.2020.107248
dc.relation/*ref*/Y. M. Choi et al., “An efficient methodology for the simulation of nonlinear irregular waves in computational fluid dynamics solvers based on the high order spectral method with an application with OpenFOAM,” Int. J. Nav. Archit. Ocean Eng., vol. 15, p. 100510, 2023. https://doi.org/10.1016/J.IJNAOE.2022.100510
dc.relation/*ref*/L. Carlo, C. Iuppa, and C. Faraci, “A numerical-experimental study on the hydrodynamic performance of a U-OWC wave energy converter,” Renew. Energy, vol. 203, pp. 89–101, Feb. 2023. https://doi.org/10.1016/J.RENENE.2022.12.057
dc.relation/*ref*/L. Gurnari, P. G. F.Filianoti, and S. M.Camporeale, “Fluid dynamics inside a U-shaped oscillating water column (OWC): 1D vs. 2D CFD model,” Renew. Energy, vol. 193, pp. 687–705, Jun. 2022. https://doi.org/10.1016/J.RENENE.2022.05.025
dc.relation/*ref*/J.-M. Zhan, Q. Fan, W.-Q. Hu, and Y.-J. Gong, “Hybrid realizable k-ε/laminar method in the application of 3D heaving OWCs,” Renew. Energy, vol. 155, pp. 691–702, Aug, 2020. https://doi.org/10.1016/j.renene.2020.03.140
dc.relation/*ref*/M. Kharati-koopaee and A. Fathi-kelestani, “Assessment of oscillating water column performance : Influence of wave steepness at various chamber lengths and bottom slopes,” Renew. Energy, vol. 147, Part. 1, pp. 1595–1608, Mar. 2020. https://doi.org/10.1016/j.renene.2019.09.110
dc.relation/*ref*/C. Wang and Y. Zhang, “Hydrodynamic performance of an offshore Oscillating Water Columndeviced mounted over an immersed horizontal plate : A numerical study,” Energy, vol. 222, p. 119964, May. 2021. https://doi.org/10.1016/j.energy.2021.119964
dc.relation/*ref*/A. T. Haghighi, A. H. Nikseresht, and M. Hayati, “Numerical analysis of hydrodynamic performance of a dual-chamber Oscillating Water Column,” Energy, vol. 221, p. 119892, Apr. 2021. https://doi.org/10.1016/j.energy.2021.119892
dc.relation/*ref*/Y. Cui, Z. Liu, X. Zhang, and C. Xu, “Review of CFD studies on axial-flow self-rectifying turbines for OWC wave energy conversion,” Ocean Eng., vol. 175, pp. 80–102, Mar. 2019. https://doi.org/10.1016/j.oceaneng.2019.01.040
dc.relation/*ref*/P. G. F. Filianoti, L. Gurnari, M. Torresi, S. M. Camporeale, “CFD analysis the conversion process in a fixed oscillating The of water column ( OWC ) device with a Wells turbine,” Energy Procedia, vol. 148, pp. 1026–1033, Aug. 2018. https://doi.org/10.1016/j.egypro.2018.08.058
dc.relation/*ref*/S. Dai, S. Day, Z. Yuan, and H. Wang, “Investigation on the hydrodynamic scaling effect of an OWC type wave energy device using experiment and CFD simulation,” Renew. Energy, vol. 142, pp. 184–194, Nov. 2019. https://doi.org/10.1016/j.renene.2019.04.066
dc.relation/*ref*/M. H. Dao, L. W. Chew, and Y. Zhang, “Modelling physical wave tank with flap paddle and porous beach in OpenFOAM,” Ocean Eng., vol. 154, pp. 204–215, Apr. 2018. https://doi.org/10.1016/j.oceaneng.2018.02.024
dc.relation/*ref*/Z. Huang and S. Huang, “Two-phase flow simulations of fixed 3D oscillating water columns using OpenFOAM : A comparison of two methods for modeling quadratic power takeoff,” Ocean Eng., vol. 232, p. 108600, Jul. 2021. https://doi.org/10.1016/j.oceaneng.2021.108600
dc.relation/*ref*/Z. Deng, C. Wang, P. Wang, P. Higuera, and R. Wang, “Hydrodynamic performance of an offshore-stationary OWC device with a horizontal bottom plate: Experimental and numerical study,” Energy, vol. 187, p. 115941, Nov, 2019. https://doi.org/10.1016/j.energy.2019.115941
dc.relation/*ref*/L. A. Gaspar, P. R. F. Teixeira, and E. Didier, “Numerical analysis of the performance of two onshore oscillating water column wave energy converters at different chamber wall slopes,” Ocean Eng., vol. 201, p. 107119, Apr. 2020. https://doi.org/10.1016/j.oceaneng.2020.107119
dc.relation/*ref*/M. Hayati, A. H. Nikseresht, and A. T. Haghighi, “Sequential optimization of the geometrical parameters of an OWC device based on the specific wave characteristics,” Renew. Energy, vol. 161, pp. 386–394, Dec. 2020. https://doi.org/10.1016/j.renene.2020.07.073
dc.relation/*ref*/M. Shahabi-Nejad and A. H. Nikseresht, “A comprehensive investigation of a hybrid wave energy converter including oscillating water column and horizontal floating cylinder,” Energy, vol. 243, p. 122763, Mar. 2022. https://doi.org/10.1016/j.energy.2021.122763
dc.relation/*ref*/Y. T. B. de Lima, M. das Gomes, L. A. Isoldi, E. D. dos Santos, G. Lorenzini, and L. A O. Rocha, “Geometric Analysis through the Constructal Design of a Sea Wave Energy Converter with Several Coupled Hydropneumatic Chambers Considering the Oscillating Water Column Operating Principle,” Appl. Sci., vol. 11, no. 18, p. 8630, Sep. 2021. https://doi.org/10.3390/app11188630
dc.relation/*ref*/A. Rubio-Clemente, L. Velásquez, and E. Chica, “Design of a water channel to model the wave conditions in the Colombian Pacific Ocean,” Renewable Energy and Power Quality Journal, vol. 20, pp. 405-412, Sep. 2022. https://doi.org/10.24084/repqj20.325
dc.relation/*ref*/Dimar, Oceanographic Compilation of the Colombian Pacific Basin II, Colombia, Editorial Dimar, Serie Publicaciones Especiales CCCP. https://cecoldodigital.dimar.mil.co/2687/2/396_DIMAR_en.pdf
dc.relation/*ref*/S. Foteinis, “Wave energy converters in low energy seas : Current state and opportunities,” Renew. Sustain. Energy Rev., vol. 162, p. 112448, Jul. 2022. https://doi.org/10.1016/j.rser.2022.112448
dc.relation/*ref*/A. A. Medina Rodríguez et al., “Experimental Investigation of the Hydrodynamic Performance of Land-Fixed Nearshore and Onshore OWC with a Thick Front Wall,” Energies, vol.15, no. 7, p. 2364, Jan. 2022. https://doi.org/10.3390/en15072364
dc.relation/*ref*/C.-P. Tsai, C.H. Ko, and Y.-C. Chen, “Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter,” Sustainability, vol. 10, no. 3, p. 643, Feb. 2018. https://doi.org/10.3390/su10030643
dc.relation/*ref*/C. Xu and Z. Huang, “A dual-functional wave-power plant for wave-energy extraction and shore protection: A wave-flume study,” Appl. Energy, vol. 229, pp. 963–976, Nov. 2018. https://doi.org/10.1016/j.apenergy.2018.08.005
dc.relation/*ref*/B. Guo and J. V. Ringwood, “Geometric optimisation of wave energy conversion devices: A survey,” Appl. Energy, vol. 297, p. 117100, Sep. 2021. https://doi.org/10.1016/j.apenergy.2021.117100
dc.relation/*ref*/I. López, B. Pereiras, F. Castro, and G. Iglesias, “Performance of OWC wave energy converters : influence of turbine damping and tidal variability,” Energy Research, vol. 39, no. 4, pp. 472–483, Aug. 2014. https://doi.org/10.1002/er.3239
dc.relation/*ref*/A. Elhanafi, G. Macfarlane, A. Fleming, and Z. Leong, “Experimental and numerical investigations on the intact and damage survivability of a floating-moored oscillating water column device,” Appl. Ocean Res., vol. 68, pp. 276–292, Oct. 2017. https://doi.org/10.1016/j.apor.2017.09.007
dc.relation/*ref*/M. Letzow et al., “Numerical analysis of the influence of geometry on a large scale onshore oscillating water column device with associated seabed ramp,” Int. J. Des. Nat. Ecodynamics, vol. 15, no. 6, pp. 873–884, Dec. 2020. https://doi.org/10.18280/ijdne.150613
dc.relation/*ref*/A. Elhanafi, G. Macfarlane, A. Fleming, and Z. Leong, “Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter,” Appl. Energy, vol. 189, pp. 1–20, Mar. 2017. https://doi.org/10.1016/j.apenergy.2016.11.095
dc.relation/*ref*/M. M. Samak, H. Elgamal, and A. M. N. Elmekawy, “The contribution of L-shaped front wall in the improvement of the oscillating water column wave energy converter performance,” Energy, vol. 226, p. 120421, Jul. 2021. https://doi.org/10.1016/j.energy.2021.120421
dc.relation/*ref*/C. Wang and Y. Zhang, “Hydrodynamic performance of an offshore Oscillating Water Column device mounted over an immersed horizontal plate: A numerical study,” Energy, vol. 222, p. 119964, May. 2021. https://doi.org/10.1016/j.energy.2021.119964
dc.relation/*ref*/M. das N. Gomes, G. Lorenzini, L. A. O. Rocha, E. D. dos Santos, and L. A. Isoldi, “Constructal Design Applied to the Geometric Evaluation of an Oscillating Water Column Wave Energy Converter Considering Different Real Scale Wave Periods,” J. Eng. Thermophys., vol. 27, pp. 173–190, Apr. 2018. https://doi.org/10.1134/S1810232818020042
dc.relation/*ref*/Y. T. B. de Lima, M. das N. Gomes, L. A. Isoldi, E. D. dos Santos, G. Lorenzini, and L. A. O. Rocha, “Geometric analysis through the constructal design of a sea wave energy converter with several coupled hydropneumatic chambers considering the oscillating water column operating principle,” Appl. Sci., vol. 11, no. 18, p. 8630, Sep. 2021. https://doi.org/10.3390/app11188630
dc.relation/*ref*/M. M. Han and C. M. Wang, “Potential flow theory-based analytical and numerical modelling of porous and perforated breakwaters : A review,” Ocean Eng., vol. 249, p. 110897, Apr. 2022. https://doi.org/10.1016/j.oceaneng.2022.110897
dc.relation/*ref*/M. Rashed Mia, M. Zhao, H. Wu, and A. Munir, “Numerical investigation of offshore oscillating water column devices,” Renew. Energy, vol. 191, pp. 380–393, May. 2022. https://doi.org/10.1016/j.renene.2022.04.069
dc.relation/*ref*/P. Mohapatra and T. Sahoo, “Hydrodynamic performance analysis of a shore fixed oscillating water column wave energy converter in the presence of bottom variations,” Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ., vol. 234, no. 1, pp. 37-47, Feb. 2020. https://doi.org/10.1177/1475090219864833
dc.relation/*ref*/A. H. S. Weerakoon, B.-H. Kim, Y.-J. Cho, D. D. Prasad, M. Rafiuddin Ahmed, and Y.-H. Lee, “Design optimization of a novel vertical augmentation channel housing a cross-flow turbine and performance evaluation as a wave energy converter,” Renew. Energy, vol. 180, pp. 1300–1314, Dec. 2021. https://doi.org/10.1016/j.renene.2021.08.092
dc.relation/*ref*/W. C. Chen, Y. L. Zhang, J. Yang, H. F. Yu, and S. D. Liang, “Experiments and CFD modeling of a dual-raft wave energy dissipator,” Ocean Eng., vol. 237, p. 109648, Oct. 2021. https://doi.org/10.1016/j.oceaneng.2021.109648
dc.relation/*ref*/Z. Liu, C. Xu, and K. Kim, “A CFD-based wave-to-wire model for the oscillating water column wave energy Convertor,” Ocean Eng., vol. 248, p. 110842, Mar. 2022. https://doi.org/10.1016/j.oceaneng.2022.110842
dc.relation/*ref*/M. Shalby, A. Elhanafi, P. Walker, and D. G. Dorrell, “CFD modelling of a small–scale fixed multi–chamber OWC device,” Appl. Ocean Res., vol. 88, pp. 37–47, Jul. 2019. https://doi.org/10.1016/j.apor.2019.04.003
dc.relation/*ref*/A. Çelik and A. Altunkaynak, “Experimental investigations on the performance of a fixed-oscillating water column type wave energy converter,” Energy, vol. 188, p. 116071, Dec. 2019. https://doi.org/10.1016/j.energy.2019.116071
dc.relation/*ref*/T. Vyzikas, S. Deshoulières, O. Giroux, M. Barton, and D. Greaves, “Numerical study of fixed Oscillating Water Column with RANS-type two-phase CFD model,” Renew. Energy, vol.102, Part. B, pp. 294-305, Mar. 2017. https://doi.org/10.1016/j.renene.2016.10.044
dc.relation/*ref*/T. Vyzikas, S. Deshoulières, M. Barton, O. Giroux, D. Greaves, and D. Simmonds, “Experimental investigation of different geometries of fixed OWC devices,” Renew. Energy, vol. 104, pp. 248–258, Apr. 2017. https://doi.org/10.1016/j.renene.2016.11.061
dc.relation/*ref*/R. G. Dean and R. A. Dalrymple, Water wave mechanics for engineers and scientists, Advanced Series on Ocean Engineering: Volume 2, world scientific publishing company, 1991. https://doi.org/10.1142/1232
dc.relation/*ref*/K. Rezanejad, C. Guedes Soares, I. López, and R. Carballo, “Experimental and numerical investigation of the hydrodynamic performance of an oscillating water column wave energy converter,” Renew. Energy, vol. 106, pp. 1–16, Jun. 2017. https://doi.org/10.1016/j.renene.2017.01.003
dc.relation/*ref*/C. Xu, Z. Liu, and G. Tang, “Experimental study of the hydrodynamic performance of a U-oscillating water column wave energy converter,” Ocean Eng., vol. 265, p. 112598, Dec. 2022. https://doi.org/10.1016/j.oceaneng.2022.112598
dc.relation/*ref*/L. Gurnari, P. G. F. Filianoti, and S. M. Camporeale, “Fluid dynamics inside a U-shaped oscillating water column ( OWC ): 1D vs. 2D CFD model,” Renew. Energy, vol. 193, pp. 687–705, Jun. 2022. https://doi.org/10.1016/j.renene.2022.05.025
dc.relation/*ref*/D.-zhi Ning, B.-ming Guo, R.-quan Wang, T. Vyzikas, and D. Greaves, “Geometrical investigation of a U-shaped oscillating water column wave energy device,” Appl. Ocean Res., vol. 97, p. 102105, Apr. 2020. https://doi.org/10.1016/j.apor.2020.102105
dc.relation/*ref*/I. López, B. Pereiras, F. Castro, and G. Iglesias, “Optimisation of turbine-induced damping for an OWC wave energy converter using a RANS–VOF numerical model,” Appl. Energy, vol. 127, pp. 105–114, Aug. 2014. https://doi.org/10.1016/j.apenergy.2014.04.020
dc.relation/*ref*/A. Elhanafi, A. Fleming, G. Macfarlane, and Z. Leong, “Numerical hydrodynamic analysis of an offshore stationary–floating oscillating water column e wave energy converter using CFD,” Int. J. Nav. Archit. Ocean Eng., vol. 9, no. 1, pp. 77-99, Jan. 2017. https://doi.org/10.1016/j.ijnaoe.2016.08.002
dc.relation/*ref*/S. Saincher and J. Banerjee, “Influence of wave breaking on the hydrodynamics of wave energy converters: A review,” Renew. Sustain. Energy Rev., vol. 58, pp. 704–717, May. 2016. https://doi.org/10.1016/j.rser.2015.12.301
dc.rightsDerechos de autor 2023 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 26 No. 57 (2023); e2630en-US
dc.sourceTecnoLógicas; Vol. 26 Núm. 57 (2023); e2630es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectColumna de agua oscilantees-ES
dc.subjectconvertidor de energía de las olases-ES
dc.subjectenergía de las olases-ES
dc.subjectenergía oceánicaes-ES
dc.subjectmodelado computacionales-ES
dc.subjectOscillating water columnen-US
dc.subjectwave energy converteren-US
dc.subjectwave energyen-US
dc.subjectocean energyen-US
dc.subjectcomputational modelingen-US
dc.titleNumerical Simulation of an Oscillating Water Column for the Wave Conditions of the Colombian Pacific Oceanen-US
dc.titleSimulación numérica de una columna de agua oscilante para las condiciones de ola del océano Pacífico colombianoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
2630-MPU-VF.pdf
Tamaño:
917.28 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
2256-5337-teclo-26-57-e203.xml
Tamaño:
150.57 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
344276660005.epub
Tamaño:
832.61 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
3406.html
Tamaño:
145.65 KB
Formato:
Hypertext Markup Language