Energy Study of the Panela Production Process in Two Varieties of Saccharum Officinarum L. (Sugarcane) in the Ecuadorian Amazon

dc.creatorGonzález-Rivera, Víctor
dc.creatorAlbán-Galárraga, Michael José
dc.creatorGonzález-Rivera, Juan
dc.creatorHidalgo-Guerrero, Irene
dc.date2025-02-28
dc.date.accessioned2025-10-01T23:53:15Z
dc.descriptionThe Ecuadorian Amazon is a region where Saccharum officinarum L. is cultivated for panela production. Traditionally, this process relied on the use of firewood as an energy source for juice concentration. This practice generated an environmental impact and affected the quality of the final product. The objective of this research was to demonstrate the advantages of implementing new technologies in panela production. The methodology employed consisted of evaluating the energy process used in 36 panela factories in the Ecuadorian Amazon that used traditional methods with furnaces. The study focused on two cane varieties cultivated in the country: Puerto Rico and Limeña. The maturity index and physical characteristics of both varieties were evaluated. Additionally, a laboratory-scale trial was conducted where cane juice was concentrated using steam generated by boilers, with the aim of comparing the efficiency of this method with the traditional one. For each process, a mass and energy balance were performed. The results indicated that the average overall efficiency in the furnace system was 58,50 %, while in the boiler system it reached 83,50 %. In conclusion, these results demonstrated that the use of boilers in panela production is significantly more energy efficient than the traditional furnace method, with a positive increase of 25 % in overall efficiency. This technological improvement not only decreases the environmental impacts associated with panela production but also represents an opportunity to increase producers' incomes by optimizing energy resources.en-US
dc.descriptionLa Amazonía Ecuatoriana es una región en la que se cultiva Saccharum officinarum L. para la producción de panela. Tradicionalmente, este proceso dependía del uso de leña como fuente de energía para la concentración del jugo. Esta práctica generaba un impacto ambiental y afecta la calidad del producto final. El objetivo de esta investigación fue demostrar las ventajas de implementar nuevas tecnologías en la producción panelera. La metodología empleada consistió en la evaluación del proceso energético utilizado en 36 fábricas paneleras de la Amazonía ecuatoriana que utilizaban métodos tradicionales con hornillas. El estudio se enfocó en dos variedades de caña cultivadas en el país: Puerto Rico y Limeña. Se evaluó el índice de madurez y las características físicas de ambas variedades. Adicionalmente, se llevó un ensayo a nivel de laboratorio donde se concentró el jugo de caña utilizando vapor generado por calderas, con el objeto de comparar la eficiencia de este método con el tradicional. Para cada proceso se realizó un balance de masa y energía. Los resultados indicaron que la eficiencia global promedio en el sistema de hornilla fue del 58,50 %, mientras que en el sistema de caldera alcanzó un 83,50 %. En conclusión, estos resultados demostraron que la utilización de calderas en la producción de panela es significativamente más eficiente energéticamente que el método tradicional de hornillas, con la obtención de un incremento positivo del 25 % en la eficiencia global. Esta mejora tecnológica no solo disminuye los impactos ambientales asociados con la producción panelera, sino que también representa una oportunidad para incrementar los ingresos de los productores al optimizar los recursos energéticos.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3197
dc.identifier10.22430/22565337.3197
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7922
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3197/3500
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3197/3749
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3197/3750
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3197/3751
dc.relation/*ref*/J. M. García, P. C. Narváez, F. J. Heredia, Á. Orjuela, and C. Osorio, “Physicochemical and sensory (aroma and colour) characterisation of a non-centrifugal cane sugar (‘panela’) beverage,” Food Chem., vol. 228, pp. 7–13, Aug. 2017. https://doi.org/10.1016/j.foodchem.2017.01.134
dc.relation/*ref*/A. L. Alarcón, A. Orjuela, P. C. Narváez, and E. C. Camacho, ”Thermal and Rheological Properties of Juices and Syrups during Non-centrifugal Sugar Cane (Jaggery) Production,” Food and Bioproducts Processing, vol. 121, pp. 76–90, May. 2020. https://doi.org/10.1016/j.fbp.2020.01.016
dc.relation/*ref*/Y. Asikin, Y. Nakaza, G. Maeda, H. Kaneda, K. Takara, and K. Wada, “Evaporation Temperature Alters Physicochemical Characteristics and Volatile Maillard Reaction Products of Non-Centrifugal Cane Sugar (NCS): Comparison of Polyethylene Membrane and Retronasal Aroma Simulator Techniques for the Extraction of Volatile Organic Compounds in NCS,” Appl. Sci., vol. 13, no. 11, p. 6402, May. 2023. https://doi.org/10.3390/app13116402
dc.relation/*ref*/K. Kumari Dubey, S. Snigdha Mishra, S. J. Marathe, S. M. Mahajani, A. Arora, and R. S. Singhal, “Incorporation of jaggery in beetroot jam enhances its antioxidant properties with acceptable sensory and physicochemical profile,” Food and Humanity, vol. 1, pp. 985-995, Dec. 2023. https://doi.org/10.1016/j.foohum.2023.08.005
dc.relation/*ref*/P. Verma, N.G. Shah, and S.M. Mahajani, “Why jaggery powder is more stable than solid jaggery blocks,” LWT - Food Science and Technology, vol. 101, pp. 308-314, Aug. 2019. https://doi.org/10.1016/j.lwt.2019.04.093
dc.relation/*ref*/M. J. Guerra, and M.V. Mujica, “Physical and chemical properties of granulated cane sugar ‘panelas’,” Ciência e Tecnologia de Alimentos, vol. 30, no. 1, Jan-Mar. 2010. http://www.redalyc.org/articulo.oa?id=395940099037
dc.relation/*ref*/W. R. Jaffé, “Nutritional and functional components of non centrifugal cane sugar: A compilation of the data from the analytical literature,” Journal of Food Composition and Analysis, vol. 43, pp. 194–202, Nov. 2015. https://doi.org/10.1016/j.jfca.2015.06.007
dc.relation/*ref*/K. Thamaphat, B. A. Goodman, P. Limsuwan, and S. Meejoo Smith, “Rapid screening for anthocyanins in cane sugars using ESR spectroscopy,” Food Chemistry, vol. 171, pp. 123–127, Mar. 2015. https://doi.org/10.1016/j.foodchem.2014.08.126
dc.relation/*ref*/A. Kumar, and S. Singh, “The benefit of Indian jaggery over sugar on human health,” in Dietary Sugar, Salt and Fat in Human Health, New York, NY, USA: Elsevier, 2020, pp. 347–359. https://doi.org/10.1016/B978-0-12-816918-6.00016-0
dc.relation/*ref*/V. González Rivera, M. J. Albán Galárraga, E. C. Casco Guerrero, and I. Hidalgo Guerrero, “Critical analysis of the environmental impacts generated by the sugar cane [1agroindustry in the province of Pastaza - Ecuadorian Amazon,” Conciencia Digital, vol. 7, no. 3, pp. 6–25, Jul. 2024. https://doi.org/10.33262/concienciadigital.v7i3.3070
dc.relation/*ref*/D. H. Flórez-Martínez, C. A. Contreras-Pedraza, and J. Rodríguez, “A systematic analysis of non-centrifugal sugar cane processing: Research and new trends,” Trends in Food Science & Technology, vol. 107, pp. 415-428, Jan. 2020. https://doi.org/10.1016/j.tifs.2020.11.011
dc.relation/*ref*/J. Rodríguez, F. Velásquez, J. Espitia, S. Escobar, and O. Mendieta, “Thermal performance evaluation of production technologies for non-centrifuged sugar for improvement in energy utilization,” Energy, vol. 152, pp. 858-865, Jun. 2018. https://doi.org/10.1016/j.energy.2018.03.127
dc.relation/*ref*/F. Velásquez, J. Espitia, O. Mendieta, S. Escobar, and J. Rodriguez, “Centrifugal cane sugar processing: A review on recent advances and the influence of process variables on qualities attributes of final products,” Journal of Food Engineering, vol. 255, pp. 32-40, Aug. 2019. https://doi.org/10.1016/j.jfoodeng.2019.03.009
dc.relation/*ref*/O. Mendieta, L. Castro, H. Escalante, and M. Garfí, “Low-cost anaerobic digester to promote the circular bioeconomy in the non-centrifugal cane sugar sector: A life cycle assessment,” Bioresource Technology, vol. 326, p. 124783, Apr. 2021. https://doi.org/10.1016/j.biortech.2021.124783
dc.relation/*ref*/L. F. Gutiérrez-Mosquera, S. Arias-Giraldo, and A. M. Ceballos-Peñaloza, “Advances in traditional production of panela in Colombia: analysis of technological improvements and alternatives,” Ingeniería y competitividad, vol. 20, no. 1, pp. 107–123, Jan-Jun. 2018. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30332018000100107
dc.relation/*ref*/R. M. Ibarra Guevara, J. C. Barrientos Fuentes, and W. A. Gómez Guerrero, “Technical, economic, social, and environmental implications of the organic panela production in Nocaima, Colombia: The ASOPROPANOC case,” Agronomía Colombiana, vol. 41, no. 1, p. e105356, Jan. 2023. https://doi.org/10.15446/agron.colomb.v41n1.105356
dc.relation/*ref*/A. L. Alarcón et al., “Chemical characteristics and colorimetric properties of non-centrifugal cane sugar (‘panela’) obtained via different processing technologies,” Food Chem., vol. 340, p. 128183, 2021. https://doi.org/10.1016/j.foodchem.2020.128183
dc.relation/*ref*/J. Guevarra Blaschike, “Plan de Ordenamiento Territorial de la Provincia de Pastaza, Puyo-Ecuador al Año 2025,” Pastaza Gobierno Provincial, Pataza, Ecuador, 2019. https://patronatopastaza.gob.ec/wp-content/uploads/2022/02/Plan-de-Desarrollo-y-Ordenamiento-Territorial-Pastaza-2019.pdf
dc.relation/*ref*/M. Enríquez, B. Andrade, and J. Morales, “Modelo de gestión asociativo de la asociación de cañicultores de Pastaza,” Reciena, vol. 2, no. 2, pp. 12-18, Oct. 2022. https://reciena.espoch.edu.ec/index.php/reciena/article/view/72
dc.relation/*ref*/J. P. Alvarado et al., “Evaporation automation at the Central de Mieles de Útica, Colombia, for non-centrifugal sugar cane production: Sustainable optimization strategies,” Bioresour. Technol. Rep., vol. 26, p. 101850, 2024. https://doi.org/10.1016/j.biteb.2024.101850
dc.relation/*ref*/D. Marcelo, R. La Madrid, and H. Santamaría, “Evaluación mediante indicadores productivos y energéticos de tres módulos de producción de panela granulada,” in Eleventh LACCEI Latin American and Caribbean Conference for Engineering and Technology (LACCEI’2013), Cancún, Mexico, 2013. https://www.laccei.org/LACCEI2013-Cancun/RefereedPapers/RP252.pdf
dc.relation/*ref*/H. I. Velásquez Arrendondo, F. Chejne Janna, and A. F. Agudelo Santamaría, “Diagnóstico energético de los procesos productivos de la panela en Colombia,” Revista Facultad Nacional de Agronomía, vol. 57, no. 2, Dec. 2004. http://www.scielo.org.co/pdf/rfnam/v57n2/a07v57n2.pdf
dc.relation/*ref*/W. F. Quezada Moreno, Guía técnica agroindustrial panelera, Universidad Técnica del Norte, Ibarra, Ecuador, 2007. [Online]. Available: https://repositorio.utn.edu.ec/bitstream/123456789/934/1/Gu%C3%ADa%20T%C3%A9cnica%20de%20Agroindustria%20Panelera.pdf
dc.relation/*ref*/R. M. Felder, R. W. Rousseau, L. G. Bullard, and J. A. Newell, Felder’s elementary principles of chemical processes. Nashville, TN, USA: John Wiley & Sons, 2016. https://himatekkim.ulm.ac.id/id/wp-content/uploads/2021/06/Felder-R.M-Rousseau-R.W-Elementary-Principles-on-Chemical-Process-3rd-Edition.pdf
dc.relation/*ref*/D. Q. Kern, Procesos de Transferencia de Calor, México D.F, Compaia Editorial Continental S.A. de C.V., 1999. https://thunderbooks.files.wordpress.com/2009/06/procesos_de_transferencia_de_calor_-_kern__31_ed_.pdf
dc.relation/*ref*/E. Hugot, and G. H. Jenkins, "Juice Heating," in Handbook of Cane Sugar Engineering, New York, NY, USA: Elsevier, 1960, p. 448. https://books.tarbaweya.org/static/documents/uploads/pdf/Handbook%20of%20Cane%20Sugar%20Engineering%20by%20E.%20Hugot%20(z-lib.org).pdf
dc.relation/*ref*/L. A. Iturralde Carrera, E. B. Valuca, and A. R. Espinosa Palenque, “Metodología para balance energético de centrales azucareros,” Ladee, vol. 2, no. 2, pp. 1–15, Jul-Dec. 2021. https://doi.org/10.17981/ladee.02.02.2022.01
dc.relation/*ref*/FedePanela “Nota de información de la NAMA (NINO) reconversión productiva y tecnológica del subsector panelero,” Federación Nacional de Productores de Panela, Bogotá D. C. Colombia, Nov. 2015. [Online]. Available: https://www4.unfccc.int/sites/PublicNAMA/_layouts/UN/FCCC/NAMA/Download.aspx?ListName=NAMA&Id=146&FileName=NINO%20PANELA%20VFINAL.pdf
dc.relation/*ref*/C. J. Geankoplis, "Secado de materiales de proceso," in Procesos de Transporte y Operaciones Unitarias, 3rd ed. México: Cecsa (Compañía Editorial Continente), 1998, p. 579. [Online]. https://fenomenosdetransporte.wordpress.com/wp-content/uploads/2008/05/geankopolis.pdf
dc.relation/*ref*/W. L. McCabe, J. C. Smith, and P. Harriott, “Heat transfer to fluids with phase change,” in Unit Operations of Chemical Engineering, 5th ed. New York, NY, USA: McGraw-Hill, 1993, p. 374. https://evsujpiche.wordpress.com/wp-content/uploads/2014/06/unit-operations-of-chemical-engineering-5th-ed-mccabe-and-smith.pdf
dc.relation/*ref*/S. A. Mosquera, J. E. Carrera, and H. S. Villada, “Variables que afectan la calidad de la Panela Procesada en el Departamento del Cauca,” Facultad de Ciencias Agropecuarias, vol. 5, no. 1, pp. 21–24, Mar. 2007. Available: https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/645/1813
dc.relation/*ref*/J. E. González, C. Morillo Robles, J. García, J. Cárdenas, and D. Oliva, “Determinación del potencial energético del pigüe (Piptocoma Discolor) en la amazonía ecuatoriana,” Ciencia Digital, vol. 3, no. 1, pp. 376-393, Feb. 2019. https://doi.org/10.33262/cienciadigital.v3i1.298
dc.relation/*ref*/G. Cañizares-Pentón, M. F. Rivero-Aragón, R. A. Pérez-Bermúdez, and E. González-Suárez, “La gestión energética y su impacto en el sectorindustrial de la provincia de Villa Clara, Cuba,” Tecnología Química, vol. 34, no. 1, pp. 13-21, Nov. 2015. https://tecnologiaquimica.uo.edu.cu/index.php/tq/article/view/356/348
dc.relation/*ref*/J. E. González, A. Papue, V. González, A. Borja, and D. Oliva, “Crecimiento y conservación de Piptocoma discolor (Pigüe) en la provincia de Pastaza, Ecuador,” Revista Cubana de Ciencias Forestales, vol. 6, no. 3, pp. 366–379, Sep- Dec. 2018. http://scielo.sld.cu/scielo.php?pid=S2310-34692018000300366&script=sci_arttext
dc.relation/*ref*/G. Erazo, J. C. Izurieta, P. Cronkleton, A. Larson, and L. Putzel, El uso de pigüe (Piptocoma discolor) por los pequeños productores de Napo, Ecuador: Manejo sostenible de una especie pionera de madera para los medios de vida locales, Bogor, Indonesia: CIFOR, 2014. http://www.cifor.org/publications/pdf_files/infobrief/4424-infobrief.pdf
dc.relation/*ref*/X. Checa, J. Grijalva, R. Ramos, P. Barrera, and R. Limongi, “Situación de los Recursos Genéticos Forestales – Informe País Ecuador,” Programa Nacional de Forestería del INIAP, Quito, Ecuador, Technical Report, 2012. https://www.fao.org/4/i3825e/i3825e20.pdf
dc.relation/*ref*/J. Rodríguez, F. Velásquez, J. Espitia, S. Escobar, and O. Mendieta, “Thermal performance evaluation of production technologies for non-centrifuged sugar for improvement in energy utilization,” Energy, vol. 151, pp. 858-865, Jun. 2018. https://doi.org/10.1016/j.energy.2018.03.127
dc.relation/*ref*/M. E. Guerrero-Useda, and J. D. Escobar-Guzmán, “Eficiencia técnica de la producción de panela,” Revista de Tecnología, vol. 14, no. 1, pp. 107-116, Feb. 2015. https://dialnet.unirioja.es/servlet/articulo?codigo=6041583
dc.relation/*ref*/Venkatesh et al., “Current production strategies and sustainable approaches towards the resurgence of non-centrifugal cane sugar production – a review,” Sustain. Food Technol., vol. 1, no. 2, pp. 200–214, Jan. 2023. https://doi.org/10.1039/d2fb00032f
dc.relation/*ref*/J. Bonilla et al., “Termodinámica de Equipos Industriales: Eficiencia Energética de una Caldera,” Revista Electrónica, no. 13, pp. 18-34, Jul. 2009. https://fgsalazar.net/LANDIVAR/ING-PRIMERO/boletin13/URL_13_QUI03.pdf
dc.relation/*ref*/
dc.rightsDerechos de autor 2025 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 28 No. 62 (2025); e3197en-US
dc.sourceTecnoLógicas; Vol. 28 Núm. 62 (2025); e3197es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectbiomasaes-ES
dc.subjectcaña de azúcares-ES
dc.subjecteficiencia energéticaes-ES
dc.subjectproducción de panelaes-ES
dc.subjecttecnologías limpiases-ES
dc.subjectbiomassen-US
dc.subjectsugarcaneen-US
dc.subjectenergy efficiencyen-US
dc.subjectpanela productionen-US
dc.subjectclean technologiesen-US
dc.titleEnergy Study of the Panela Production Process in Two Varieties of Saccharum Officinarum L. (Sugarcane) in the Ecuadorian Amazonen-US
dc.titleEstudio energético del proceso de obtención de panela en dos variedades de Saccharum officinarum L. (caña de azúcar) en la Amazonía Ecuatorianaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
3197_MPU_VF_v5.pdf
Tamaño:
587.47 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
344281653006.xml
Tamaño:
108.58 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
344281653006.epub
Tamaño:
711.76 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
3751.html
Tamaño:
133.15 KB
Formato:
Hypertext Markup Language