Credit Risk Assessment Models in Financial Technology: A Review

dc.creatorTadeo Espinoza, Frank Edward
dc.creatorCoral Ygnacio, Marco Antonio
dc.date2023-12-20
dc.date.accessioned2025-10-01T23:53:09Z
dc.descriptionThis review analyzes a selection of scientific articles on the implementation of Credit Risk Assessment (CRA) systems to identify existing solutions, the most accurate ones, and limitations and problems in their development. The PRISMA statement was adopted as follows: the research questions were formulated, the inclusion criteria were defined, the keywords were selected, and the search string was designed. Finally, several descriptive statistics of the selected articles were calculated. Thirty-one solutions were identified in the selected studies; they include methods, models, and algorithms. Some of the most widely used models are based on Artificial Intelligence (AI) techniques, especially Neural Networks and Random Forest. It was concluded that Neural Networks are the most efficient solutions, with average accuracies above 90 %, but their development can have limitations. These solutions should be implemented considering the context in which they will be employed.en-US
dc.descriptionEsta revisión analiza una selección de artículos científicos sobre la implantación de sistemas de evaluación del riesgo de crédito para identificar las soluciones existentes, las más acertadas y las limitaciones y problemas en su desarrollo. Se adoptó la declaración PRISMA del siguiente modo: se formularon las preguntas de investigación, se definieron los criterios de inclusión, se seleccionaron las palabras clave y se diseñó la cadena de búsqueda. Por último, se calcularon varios estadísticos descriptivos de los artículos seleccionados. En los estudios seleccionados se identificaron 31 soluciones, entre métodos, modelos y algoritmos. Algunos de los modelos más utilizados se basan en técnicas de Inteligencia Artificial (IA), especialmente Redes Neuronales y Bosques Aleatorios. Se concluyó que las Redes Neuronales son las soluciones más eficientes, con precisiones medias superiores al 90 %, pero su desarrollo puede tener limitaciones. Estas soluciones deben implementarse teniendo en cuenta el contexto en el que se van a emplear.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.formatapplication/pdf
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2679
dc.identifier10.22430/22565337.2679
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7873
dc.languageeng
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2679/2994
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2679/3090
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2679/3091
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2679/3108
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2679/3415
dc.relation/*ref*/S. R. Lenka, S. K. Bisoy, R. Priyadarshini, J. Hota, and R. K. Barik, “An effective credit scoring model implementation by optimal feature selection scheme,” 2021 Int. Conf. Emerg. Smart Comput. Informatics (ESCI), Pune, India, 2021, pp. 106–109. https://doi.org/10.1109/ESCI50559.2021.9396911
dc.relation/*ref*/H. Kvamme, N. Sellereite, K. Aas, and S. Sjursen, “Predicting mortgage default using convolutional neural networks,” Expert Syst. Appl., vol. 102, pp. 207–217, Jul. 2018. https://doi.org/10.1016/j.eswa.2018.02.029
dc.relation/*ref*/S. Wen, B. Zeng, W. Liao, P. Wei, and Z. Pan, “Research and Design of Credit Risk Assessment System Based on Big Data and Machine Learning,” 2021 IEEE 6th Int. Conf. Big Data Analytics (ICBDA), Xiamen, China, 2021, pp. 9–13. https://doi.org/10.1109/ICBDA51983.2021.9403128
dc.relation/*ref*/F. Wu, X. Su, Y. S. Ock, and Z. Wang, “Personal credit risk evaluation model of P2P online lending based on AHP,” Symmetry, vol. 13, no. 1, p. 83, Jan. 2021. https://doi.org/10.3390/sym13010083
dc.relation/*ref*/J. Nourmohammadi-Khiarak, M.-R. Feizi-Derakhshi, F. Razeghi, S. Mazaheri, Y. Zamani-Harghalani, and R. Moosavi-Tayebi, “New hybrid method for feature selection and classification using meta-heuristic algorithm in credit risk assessment,” Iran J. Comput. Sci., vol. 3, pp. 1–11, Jun. 2020. https://doi.org/10.1007/s42044-019-00038-x
dc.relation/*ref*/M. Wang and H. Ku, “Utilizing historical data for corporate credit rating assessment,” Expert Syst. Appl., vol. 165, p. 113925, Mar. 2021. https://doi.org/10.1016/j.eswa.2020.113925
dc.relation/*ref*/S. Moradi and F. Mokhatab Rafiei, “A dynamic credit risk assessment model with data mining techniques: evidence from Iranian banks,” Financ. Innov., vol. 5, no. 15, Mar. 2019. https://doi.org/10.1186/s40854-019-0121-9
dc.relation/*ref*/A. Fenerich et al., “Use of machine learning techniques in bank credit risk analysis,” Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 36, no. 3, p. 40, Sep. 2020. https://doi.org/10.23967/J.RIMNI.2020.08.003
dc.relation/*ref*/A. Wójcicka-Wójtowicz, A. Lyczkowska-Hanckowiak, and K. Maciej Piasecki, “Credit Risk Assessment by Ordered Fuzzy Numbers,” SSRN Electron. J., Nov. 2019. https://doi.org/10.2139/ssrn.3479218
dc.relation/*ref*/A. Niu, B. Cai, and S. Cai, “Big Data Analytics for Complex Credit Risk Assessment of Network Lending Based on SMOTE Algorithm,” Complexity, vol. 2020, p. 8563030, Sep. 2020. https://doi.org/10.1155/2020/8563030
dc.relation/*ref*/A. Agosto, P. Giudici, and T. Leach, “Spatial Regression Models to Improve P2P Credit Risk Management,” Front. Artif. Intell., vol. 2, May. 2019. https://doi.org/10.3389/frai.2019.00006
dc.relation/*ref*/Y. Cao, “Internet financial supervision based on machine learning and improved neural network,” J. Intell. Fuzzy Syst., vol. 40, no. 4, pp. 7297–7308, Apr. 2021. https://doi.org/10.3233/JIFS-189555
dc.relation/*ref*/C. Luo, “A comprehensive decision support approach for credit scoring,” Ind. Manag. Data Syst., vol. 120, no. 2, pp. 280–290, Oct. 2019. https://doi.org/10.1108/IMDS-03-2019-0182
dc.relation/*ref*/A. A. Turjo, Y. Rahman, S. M. M. Karim, T. H. Biswas, I. Dewan, and M. I. Hossain, “CRAM: A Credit Risk Assessment Model by Analyzing Different Machine Learning Algorithms,” 4th International Conference on Information and Communications Technology, Yogyakarta, Indonesia, 2021 pp. 125–130. https://doi.org/10.1109/ICOIACT53268.2021.9563995
dc.relation/*ref*/A. Wójcicka-Wójtowicz and K. Piasecki, “Application of the oriented fuzzy numbers in credit risk assessment,” Mathematics, vol. 9, no. 5, p. 535, Mar. 2021. https://doi.org/10.3390/math9050535
dc.relation/*ref*/C. Yung-Chia, C. Kuei-Hu, and H. Yi-Hsuan, “A novel fuzzy credit risk assessment decision support system based on the python web framework,” J. Ind. Prod. Eng., vol. 37, no. 5, pp. 229–244, Jun. 2020. https://doi.org/10.1080/21681015.2020.1772385
dc.relation/*ref*/S. Haloui and A. El Moudden, “An optimal prediction model’s credit risk: The implementation of the backward elimination and forward regression method,” International Journal of Advanced Computer Science and Applications, vol. 11, no. 2, p. 9549868, 2020. https://doi.org/10.14569/ijacsa.2020.0110259
dc.relation/*ref*/H. Xie and Y. Shi, “A Big Data Technique for Internet Financial Risk Control,” Mob. Inf. Syst., vol. 2022, Jul. 2022. https://doi.org/10.1155/2022/9549868
dc.relation/*ref*/L. Cheng-yong, D. Tian-yu, and M. Ling-xing, “The Prevention of Financial Legal Risks of B2B E-commerce Supply Chain,” Wirel. Commun. Mob. Comput., vol. 2022, p. 6154011, Jan. 2022. https://doi.org/10.1155/2022/6154011
dc.relation/*ref*/Y. Li, “Credit risk prediction based on machine learning methods,” 14th Int. Conf. Comput. Sci. Education. Toronto, Canada, 2019 pp. 1011–1013. https://doi.org/10.1109/ICCSE.2019.8845444
dc.relation/*ref*/A. Liberati et al., The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration, Journal of Clinical Epidemiology, vol. 62, no. 10, pp. e1-e34 Oct. 2009. https://doi.org/10.1016/j.jclinepi.2009.06.006
dc.relation/*ref*/Y. Zhu, L. Zhou, C. Xie, W. Gang-Jin, and N. Truong. V, “Forecasting SMEs’ credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach,” Int. J. Prod. Econ., vol. 211, pp. 22–33, May. 2019. https://doi.org/10.1016/j.ijpe.2019.01.032
dc.relation/*ref*/P. Pławiak, M. Abdar, and U. R. Acharya, “Application of new deep genetic cascade ensemble of SVM classifiers to predict the Australian credit scoring,” Appl. Soft Comput. J., vol. 84, p. 105740, Nov. 2019. https://doi.org/10.1016/j.asoc.2019.105740
dc.relation/*ref*/X. Huang, X. Liu, and Y. Ren, “Enterprise credit risk evaluation based on neural network algorithm,” Cogn. Syst. Res., vol. 52, pp. 317–324, Dec. 2018. https://doi.org/10.1016/j.cogsys.2018.07.023
dc.relation/*ref*/X. Ye, D. Lu-an, and D. Ma, “Loan evaluation in P2P lending based on Random Forest optimized by genetic algorithm with profit score,” Electron. Commer. Res. Appl., vol. 32, pp. 23–36, Nov-Dec. 2018. https://doi.org/10.1016/j.elerap.2018.10.004
dc.relation/*ref*/K. Cheng et al., “SecureBoost: A Lossless Federated Learning Framework,” IEEE Intell. Syst., vol. 36, no. 6, pp. 87–98, Nov.-Dec. 2021. https://doi.org/10.1109/MIS.2021.3082561
dc.relation/*ref*/K. Masmoudi, L. Abid, and A. Masmoudi, “Credit risk modeling using Bayesian network with a latent variable,” Expert Syst. Appl., vol. 127, pp. 157–166, Aug. 2019. https://doi.org/10.1016/j.eswa.2019.03.014
dc.relation/*ref*/Y. Song, Y. Wang, X. Ye, D. Wang, Y. Yin, and Y. Wang, “Multi-view ensemble learning based on distance-to-model and adaptive clustering for imbalanced credit risk assessment in P2P lending,” Inf. Sci., vol. 525, pp. 182–204, Jul. 2020. https://doi.org/10.1016/j.ins.2020.03.027
dc.relation/*ref*/D. Liang, T. Chih-Fong, D. An-Jie, and W. Eberle, “A novel classifier ensemble approach for financial distress prediction,” Knowl. Inf. Syst., vol. 54, pp. 437–462, May. 2018. https://doi.org/10.1007/s10115-017-1061-1
dc.relation/*ref*/Y. O. Serrano-Silva, Y. Villuendas-Rey, and C. Yáñez-Márquez, “Automatic feature weighting for improving financial Decision Support Systems,” Decis. Support Syst., vol. 107, pp. 78–87, Mar. 2018. https://doi.org/10.1016/j.dss.2018.01.005
dc.relation/*ref*/G. De Tre, A. Hallez, and A. Bronselaer, “Performance optimization of object comparison,” Int. J. Intell. Syst., vol. 24, no. 10, pp. 1057–1076, Jul. 2009. https://doi.org/10.1002/int.20373
dc.relation/*ref*/P. Mahata, G. Chandra. Mahata, and S. Kumar. De, “An economic order quantity model under two-level partial trade credit for time varying deteriorating items,” Int. J. Syst. Sci. Oper. Logist., vol. 7, no. 1, pp. 1–17, May. 2020. https://doi.org/10.1080/23302674.2018.1473526
dc.relation/*ref*/Y. Li-Li, Q. Yi-Wen, H. Yuan, and R. Zhao-Jun, “A Convolutional Neural Network-Based Model for Supply Chain Financial Risk Early Warning,” Comput. Intell. Neurosci., vol. 2022, p. 7825597, Apr. 2022. https://doi.org/10.1155/2022/7825597
dc.relation/*ref*/W. Cheng-Feng, H. Shian-Chang, C. Chei-Chang, and W. Yu-Min, “A predictive intelligence system of credit scoring based on deep multiple kernel learning,” Appl. Soft Comput., vol. 111, p. 107668, Nov. 2021. https://doi.org/10.1016/j.asoc.2021.107668
dc.relation/*ref*/W. Yang and L. Gao, “A Study on RB-XGBoost Algorithm-Based e-Commerce Credit Risk Assessment Model,” J. Sensors, vol. 2021, p. 7066304, Oct. 2021. https://doi.org/10.1155/2021/7066304
dc.relation/*ref*/S. Lahmiri, A. Giakoumelou, and S. Bekiros, “An adaptive sequential-filtering learning system for credit risk modeling,” Soft Comput., vol. 25, no. 13, pp. 8817–8824, May. 2021. https://doi.org/10.1007/s00500-021-05833-y
dc.relation/*ref*/X. Ye, L. an Dong, and D. Ma, “Loan evaluation in P2P lending based on Random Forest optimized by genetic algorithm with profit score,” Electron. Commer. Res. Appl., vol. , pp. 23–36, Nov-Dec. 2018. https://doi.org/10.1016/j.elerap.2018.10.004
dc.relation/*ref*/S. Luo, M. Xing, and J. Zhao, “Construction of Artificial Intelligence Application Model for Supply Chain Financial Risk Assessment,” Sci. Program., vol. 2022, p. 4194576, Jun. 2022. https://doi.org/10.1155/2022/4194576
dc.relation/*ref*/H. Zeng, “Credit Risk Evaluation in Enterprise Financial Management by Using Convolutional Neural Network under the Construction of Smart City,” Secur. Commun. Networks., vol. 2022, p. 8532918, Aug. 2022. https://doi.org/10.1155/2022/8532918
dc.relation/*ref*/A. Merćep, L. Mrčela, M. Birov, and Z. Kostanjčar, “Deep neural networks for behavioral credit rating,” Entropy, vol. 23, no. 1, Dec. 2021. https://doi.org/10.3390/e23010027
dc.relation/*ref*/G. Yangyudongnanxin, “Financial Credit Risk Control Strategy Based on Weighted Random Forest Algorithm,” Scientific Programming, vol. 2021, p. 6276155, Oct. 2021. https://doi.org/10.1155/2021/6276155
dc.relation/*ref*/Y. Xi and Q. Li, “Improved AHP Model and Neural Network for Consumer Finance Credit Risk Assessment,” Advances in Multimedia, vol. 2022, p. 9588486, Jul. 2022. https://doi.org/10.1155/2022/9588486
dc.relation/*ref*/J. R. de Castro Vieira, F. Barboza, V. A. Sobreiro, and H. Kimura, “Machine learning models for credit analysis improvements: Predicting low-income families’ default,” Appl. Soft Comput. J., vol. 83, p. 105640, Oct. 2019. https://doi.org/10.1016/j.asoc.2019.105640
dc.relation/*ref*/W. Liu, H. Fan, and M. Xia, “Multi-grained and multi-layered gradient boosting decision tree for credit scoring,” Appl. Intell., vol. 52, pp. 5325–5341, Mar. 2022. https://doi.org/10.1007/s10489-021-02715-6
dc.relation/*ref*/B. Li, “Online Loan Default Prediction Model Based on Deep Learning Neural Network,” Computational Intelligence and Neuroscience, vol. 2022, p. 4276253, Aug. 2022. https://doi.org/10.1155/2022/4276253
dc.relation/*ref*/M. Almutairi, F. Stahl, and M. Bramer, “ReG-Rules: An Explainable Rule-Based Ensemble Learner for Classification,” IEEE Access, vol. 9, pp. 52015–52035, Feb. 2021. https://doi.org/10.1109/ACCESS.2021.3062763
dc.relation/*ref*/W. Liu, H. Fan, and M. Xia, “Step-wise multi-grained augmented gradient boosting decision trees for credit scoring,” Eng. Appl. Artif. Intell., vol. 97, p. 104036, Jan. 2021. https://doi.org/10.1016/j.engappai.2020.104036
dc.relation/*ref*/M. Yin and G. Li, “Supply Chain Financial Default Risk Early Warning System Based on Particle Swarm Optimization Algorithm,” Mathematical Problems in Engineering, vol. 2022, p. 7255967, 2022. https://doi.org/10.1155/2022/7255967
dc.relation/*ref*/Z. Hassani, M. Alambardar Meybodi, and V. Hajihashemi, “Credit Risk Assessment Using Learning Algorithms for Feature Selection,” Fuzzy Inf. Eng., vol. 12, no. 4, pp. 529–544, Jun. 2020. https://doi.org/10.1080/16168658.2021.1925021
dc.relation/*ref*/L. Wang and H. Song, “E-Commerce Credit Risk Assessment Based on Fuzzy Neural Network,” Computational Intelligence and Neuroscience, vol. 2022, p. 3088915, Jan. 2022. https://doi.org/10.1155/2022/3088915
dc.relation/*ref*/N. H. Putri, M. Fatekurohman, and I. M. Tirta, “Credit risk analysis using support vector machines algorithm,” J. Phys. Conf. Ser., vol. 1836, p. 012039, 2021. https://doi.org/10.1088/1742-6596/1836/1/012039
dc.relation/*ref*/S. Barua, D. Gavandi, P. Sangle, L. Shinde, and J. Ramteke, “Swindle: Predicting the Probability of Loan Defaults using CatBoost Algorithm,” 5th Int. Conf. Comput. Methodol. Commun., Erode, India, 2021, pp. 1710–1715. https://doi.org/10.1109/ICCMC51019.2021.9418277
dc.relation/*ref*/Y. Liu and L. Huang, “Supply chain finance credit risk assessment using support vector machine–based ensemble improved with noise elimination,” International Journal of Distributed Sensor Networks, vol. 16, no. 1, Feb. 2020. https://doi.org/10.1177/1550147720903631
dc.relation/*ref*/A. L. Leal Fica, M. A. Aranguiz Casanova Y J. Gallegos Mardones. "Análisis De Riesgo Crediticio, Propuesta Del Modelo Credit Scoring". Redalyc, vol. 26, no. 1, pp.181-207, 2018. https://doi.org/10.18359/rfce.2666
dc.relation/*ref*/Q. Liu, C. Wu, and L. Lou, “Evaluation research on commercial bank counterparty credit risk management based on new intuitionistic fuzzy method,” Soft Comput., vol. 22, pp. 5363–5375, Feb. 2018. https://doi.org/10.1007/s00500-018-3042-z
dc.relation/*ref*/V. B. Djeundje and J. Crook, “Identifying hidden patterns in credit risk survival data using Generalised Additive Models,” Eur. J. Oper. Res., vol. 277, no. 1, pp. 366–376, Aug. 2019. https://doi.org/10.1016/j.ejor.2019.02.006
dc.relation/*ref*/D. Mhlanga, “Financial inclusion in emerging economies: The application of machine learning and artificial intelligence in credit Risk assessment,” Int. J. Financ. Studies., vol. 9, no. 3, Jul. 2021. https://doi.org/10.3390/ijfs9030039
dc.relation/*ref*/A. Dattachaudhuri, S. K. Biswas, S. Sarkar, A. N. Boruah, M. Chakraborty, and B. Purkayastha, “Transparent Neural based Expert System for Credit Risk (TNESCR): An Automated Credit Risk Evaluation System,” 2020 Int. Conf. Comput. Perform. Eval. ComPE, Shillong, India, 2020, pp. 013–017. https://doi.org/10.1109/ComPE49325.2020.9199998
dc.relation/*ref*/P. Z. Lappas and A. N. Yannacopoulos, “A machine learning approach combining expert knowledge with genetic algorithms in feature selection for credit risk assessment,” Applied Soft Computing, vol. 107, p. 107391, Aug. 2021. https://doi.org/10.1016/j.asoc.2021.107391
dc.rightsDerechos de autor 2023 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 26 No. 58 (2023); e2679en-US
dc.sourceTecnoLógicas; Vol. 26 Núm. 58 (2023); e2679es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectcredit assessmenten-US
dc.subjectcredit risken-US
dc.subjecttechnology solutionsen-US
dc.subjectmachine learningen-US
dc.subjectalgorithmsen-US
dc.subjectevaluación crediticiaes-ES
dc.subjectriesgo de créditoes-ES
dc.subjectsoluciones tecnológicases-ES
dc.subjectaprendizaje automáticoes-ES
dc.subjectalgoritmoses-ES
dc.titleCredit Risk Assessment Models in Financial Technology: A Reviewen-US
dc.titleModelos para la evaluación de riego crediticio en el ámbito de la tecnología financiera: una revisiónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES

Archivos

Bloque original

Mostrando 1 - 5 de 5
Cargando...
Miniatura
Nombre:
2679_MPU-VF-ENG.pdf
Tamaño:
405.59 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
2679_MPU-VF-ESP.pdf
Tamaño:
564.97 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
344275988008.epub
Tamaño:
916.04 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
344275988008.xml
Tamaño:
156.62 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
3108.html
Tamaño:
199.38 KB
Formato:
Hypertext Markup Language