Human Activities Recognition using Semi-Supervised SVM and Hidden Markov Models

dc.creatorMorales García , Santiago
dc.creatorHenao Baena , Carlos
dc.creatorCalvo Salcedo, Andrés
dc.date2022-12-22
dc.date.accessioned2025-10-01T23:52:51Z
dc.descriptionAutomatic human activity recognition is an area of interest for developing health, security, and sports applications. Currently, it is necessary to develop methods that facilitate the training process and reduce the costs of this process. This paper explores a methodology to classify human physical activities in a semi-supervised paradigm. With this approach, it is possible to reduce the number of labels necessary to train the learning model and the complexity of this process. This process begins by deducting the number of micro-movements or sub-movements where the data should be grouped and assigning the label through a clustering technique. We perform this procedure for a specific group of micro-movements whose label is unknown. Later, the classification process starts by using two methods, a Support Vector Machine (SVM) that identifies the micro-movements and a Markov Hidden Model that detects the human physical activity as a function of sequences. The results show that with a percentage of 80 % of the known labels, we achieved outcomes like the supervised paradigms found in the literature. This facilitates training these learning models by reducing the number of examples requiring labels and reduces the economic costs, which is one of the significant limitations of machine learning processes.en-US
dc.descriptionEl reconocimiento automático de la actividad humana es un área de interés para el desarrollo de aplicaciones en salud, seguridad y deportes. Actualmente, es necesario desarrollar métodos que faciliten el proceso de entrenamiento y reduzcan los costos de este proceso. Este trabajo explora una metodología para clasificar actividades físicas humanas en un paradigma semi-supervisado. Con este enfoque, es posible reducir el número de etiquetas necesarias para entrenar el modelo de aprendizaje y la complejidad de este proceso. Este proceso comienza deduciendo el número de micro-movimientos o submovimientos en los que deben agruparse los datos y asignando la etiqueta mediante una técnica de clustering. Realizamos este procedimiento para un grupo específico de micro-movimientos cuya etiqueta se desconoce. Posteriormente, se inicia el proceso de clasificación utilizando dos métodos, una Máquina de Vectores Soportados (SVM) que identifica los micro-movimientos y un Modelo Oculto de Markov que detecta la actividad física humana en función de secuencias. Los resultados muestran que con un porcentaje del 80 % de las etiquetas conocidas, se consigue resultados como los paradigmas supervisados encontrados en la literatura. Esto facilita el entrenamiento de estos modelos de aprendizaje al reducir el número de ejemplos que requieren etiquetas y reduce los costes económicos, que es una de las limitaciones significativas de los procesos de aprendizaje automático.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2474
dc.identifier10.22430/22565337.2474
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7854
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2474/2677
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2474/2694
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2474/2695
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2474/2696
dc.relation/*ref*/A. F. Calvo, G. A. Holguin, and H. Medeiros, “Human Activity Recognition Using Multi-modal Data Fusion,” in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, Springer International Publishing, 2019, pp. 946–953. https://doi.org/10.1007/978-3-030-13469-3_109
dc.relation/*ref*/R. Gravina, P. Alinia, H. Ghasemzadeh, and G. Fortino, “Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges,” Information Fusion, vol. 35, pp. 68–80, May 2017, https://doi.org/10.1016/j.inffus.2016.09.005
dc.relation/*ref*/M. Jiang, J. Kong, G. Bebis, and H. Huo, “Informative joints based human action recognition using skeleton contexts,” Signal Process Image Commun, vol. 33, pp. 29–40, Apr. 2015, https://doi.org/10.1016/j.image.2015.02.004
dc.relation/*ref*/A. Bhattacharya, A. Sarkar, and P. Basak, “Time domain multi-feature extraction and classification of human hand movements using surface EMG,” in 2017 4th International Conference on Advanced Computing and Communication Systems (ICACCS), Jan. 2017, pp. 1–5. https://doi.org/10.1109/ICACCS.2017.8014594
dc.relation/*ref*/A. Bayat, M. Pomplun, and D. A. Tran, “A Study on Human Activity Recognition Using Accelerometer Data from Smartphones,” Procedia Comput Sci, vol. 34, pp. 450–457, Dec. 2014, https://doi.org/10.1016/j.procs.2014.07.009
dc.relation/*ref*/M. Bocksch, J. Seitz, and J. Jahn, “Pedestrian Activity Classification to Improve Human Tracking and Localization,”, in 2013 International Conference on Indoor Positioning and Indoor Navigation, Dec. 2013, pp. 667–671. [Online]. Available: https://www.researchgate.net/publication/259885771_Pedestrian_Activity_Classification_to_Improve_Human_Tracking_and_Localization
dc.relation/*ref*/C. Wu, J. Zhang, S. Savarese, and A. Saxena, “Watch-n-patch: Unsupervised understanding of actions and relations,” in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2015, pp. 4362–4370. https://doi.org/10.1109/CVPR.2015.7299065
dc.relation/*ref*/E. H. Spriggs, F. de La Torre, and M. Hebert, “Temporal segmentation and activity classification from first-person sensing,” in 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Jun. 2009, pp. 17–24. https://doi.org/10.1109/CVPRW.2009.5204354
dc.relation/*ref*/F. Destelle et al., “Low-cost accurate skeleton tracking based on fusion of kinect and wearable inertial sensors,” in 2014 22nd European Signal Processing Conference (EUSIPCO), Sep. 2014, pp. 371–375. Accessed: Oct. 31, 2021. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6952093
dc.relation/*ref*/D. Martín de Castro, “Aplicación Android para el reconocimiento automático de actividades físicas en tiempo real,” Universidad Carlos III de Madrid., Madrid, España, 2012. Accessed: Nov. 14, 2021. [Online]. Available: http://hdl.handle.net/10016/17138
dc.relation/*ref*/L. E. Pamplona-Beron, C. A. Henao Baena, and A. F. Calvo-Salcedo, “Human activity recognition using penalized support vector machines and Hidden Markov Models,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 103, pp. 152–163, May 2021, https://doi.org/10.17533/udea.redin.20210532
dc.relation/*ref*/M. Georgi, C. Amma, and T. Schultz, “Recognizing Hand and Finger Gestures with IMU based Motion and EMG based Muscle Activity Sensing,” in Proceedings of the International Conference on Bio-inspired Systems and Signal Processing, Dec. 2015, pp. 99–108. https://doi.org/10.5220/0005276900990108
dc.relation/*ref*/H. Tannous et al., “A New Multi-Sensor Fusion Scheme to Improve the Accuracy of Knee Flexion Kinematics for Functional Rehabilitation Movements,” Sensors, vol. 16, no. 11, p. 1914, Nov. 2016, https://doi.org/10.3390/s16111914
dc.relation/*ref*/S. Feng and R. Murray-Smith, “Fusing Kinect Sensor and Inertial Sensors with Multi-rate Kalman Filter,” in IET Conference on Data Fusion & Target Tracking 2014: Algorithms and Applications, 2014, pp. 1–8. https://doi.org/10.1049/cp.2014.0527
dc.relation/*ref*/S. Gaglio, G. L. Re, and M. Morana, “Human Activity Recognition Process Using 3-D Posture Data,” IEEE Trans Hum Mach Syst, vol. 45, no. 5, pp. 586–597, Oct. 2015, https://doi.org/10.1109/THMS.2014.2377111
dc.relation/*ref*/K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, “Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges, and Opportunities,” ACM Comput Surv, vol. 54, no. 4, pp. 1–40, May 2022, https://doi.org/10.1145/3447744
dc.relation/*ref*/R. Mutegeki and D. S. Han, “A CNN-LSTM Approach to Human Activity Recognition,” in 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Feb. 2020, pp. 362–366. https://doi.org/10.1109/ICAIIC48513.2020.9065078
dc.relation/*ref*/A. Bevilacqua, K. MacDonald, A. Rangarej, V. Widjaya, B. Caulfield, and T. Kechadi, “Human Activity Recognition with Convolutional Neural Networks,” in Machine Learning and Knowledge Discovery in Databases, Springer International Publishing, 2019, pp. 541–552. https://doi.org/10.1007/978-3-030-10997-4_33
dc.relation/*ref*/M. Robnik-Šikonja and I. Kononenko, “Theoretical and Empirical Analysis of ReliefF and RReliefF,” Mach Learn, vol. 53, pp. 23–69, Dec. 2003, [Online]. Available: https://link.springer.com/article/10.1023/A:1025667309714
dc.relation/*ref*/J. Shlens, “A Tutorial on Principal Component Analysis,” Apr. 2014, [Online]. Available: http://arxiv.org/abs/1404.1100
dc.relation/*ref*/K. Y. Yeung and W. L. Ruzzo, “Principal component analysis for clustering gene expression data,” Bioinformatics, vol. 17, no. 9, pp. 763–774, Sep. 2001, https://doi.org/10.1093/bioinformatics/17.9.763
dc.relation/*ref*/P. Cunningham, B. Kathirgamanathan, and S. J. Delany, “Feature Selection Tutorial with Python Examples,” Jun. 2021, [Online]. Available: http://arxiv.org/abs/2106.06437
dc.relation/*ref*/L. Zelnik-Manor and P. Perona, “Self-Tuning Spectral Clustering,” in Adv. Neural Inf. Process. Syst, Dec. 2004, vol. 17. [Online]. Available: https://proceedings.neurips.cc/paper/2004/file/40173ea48d9567f1f393b20c855bb40b-Paper.pdf
dc.relation/*ref*/D. Niu, J. G. Dy, and M. I. Jordan, “Dimensionality Reduction for Spectral Clustering.,” in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, Dec. 2011, vol. 15, pp. 552–560. Accessed: Dec. 06, 2021. [Online]. Available: http://proceedings.mlr.press/v15/niu11a/niu11a.pdf
dc.relation/*ref*/J. Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines,” Dec. 1998, Accessed: Oct. 06, 2021. [Online]. Available: https://www.microsoft.com/en-us/research/publication/sequential-minimal-optimization-a-fast-algorithm-for-training-support-vector-machines/
dc.relation/*ref*/A. Rahimi and B. Recht, “Random Features for Large-Scale Kernel Machines,” in Advances in Neural Information Processing Systems, 2007, vol. 20, pp. 1–8. [Online]. Available: https://proceedings.neurips.cc/paper/2007/file/013a006f03dbc5392effeb8f18fda755-Paper.pdf
dc.relation/*ref*/
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 26 No. 56 (2023); e2474en-US
dc.sourceTecnoLógicas; Vol. 26 Núm. 56 (2023); e2474es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectSpectral clusteringen-US
dc.subjectsemi-supervised learningen-US
dc.subjectmotion estimationen-US
dc.subjectdata fusionen-US
dc.subjecthuman activity recognitionen-US
dc.subjectAgrupamiento espectrales-ES
dc.subjectaprendizaje semisupervisadoes-ES
dc.subjectestimación de movimientoes-ES
dc.subjectfusión de datoses-ES
dc.subjectreconocimiento de actividad humanaes-ES
dc.titleHuman Activities Recognition using Semi-Supervised SVM and Hidden Markov Modelsen-US
dc.titleReconocimiento de actividades humanas mediante SVM semisupervisado y modelos ocultos de Markoves-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
2474-MPU-VF.pdf
Tamaño:
1.15 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
344273557003.epub
Tamaño:
1.76 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
344273557003.xml
Tamaño:
76.96 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2696.html
Tamaño:
120.2 KB
Formato:
Hypertext Markup Language