Effect of Baking Temperature on Carotenoids and Provitamin A in Bread made with Mandarin (Citrus reticulata) Epicarp Extract

dc.creatorOrdóñez-Santos*, Luis E.
dc.creatorEsparza-Estrada, Jessica
dc.creatorVanegas-Mahecha, Pedro
dc.date2023-12-29
dc.date.accessioned2025-10-01T23:53:09Z
dc.descriptionConsumers are interested in products with functional properties that contribute to their well-being and health. An alternative source of functional ingredients would be the by-products of the citrus industry, which can be used as natural additives in baked products. Therefore, the objective of this study was to evaluate the effect of temperature on the concentration of carotenoids and provitamin A when baking bread in a temperature range of 160-200 ºC. We studied the thermal degradation kinetics and thermodynamic parameters of the carotenoids β-carotene, α-carotene, β-cryptoxanthin, lycopene, and provitamin A in bread dough samples made with mandarin epicarp lipid extract baked at three temperatures (160, 180, and 200 ºC). The results showed that carotenoid pigments and provitamin A are significatively reduced (p < 0.05) as baking time and temperature increase, and the degradation of bioactive compounds was set to a first-order kinetic R2 > 0.83. Thermic resistance values (z) and activation energy (Ea) during the baking process of bread showed that β-carotenes are an unstable thermal phytochemical, followed by provitamin A, α-carotenoid, lycopene, and β-cryptoxanthin. In this research, it can be concluded that the results would be important for the design and optimization of baked bread, as it will allow to maximize the levels of these micronutrients.en-US
dc.descriptionLos consumidores están interesados en productos con propiedades funcionales que contribuyan a su bienestar y salud. Una fuente alternativa de ingredientes funcionales serían los subproductos de la industria de los cítricos, que pueden ser utilizados como aditivos naturales en productos horneados. Por lo tanto, el objetivo de este estudio fue evaluar el efecto de la temperatura sobre la concentración de carotenoides y provitamina A al hornear pan en un rango de temperatura de 160-200 ºC. Se estudió la cinética de degradación térmica y los parámetros termodinámicos de los carotenoides β-caroteno, α-caroteno, β-criptoxantina, licopeno y provitamina A en muestras de masa de pan elaboradas con extracto lipídico de epicarpio de mandarina horneadas a tres temperaturas (160, 180 y 200 ºC). Los resultados mostraron que los pigmentos carotenoides y la provitamina A se reducen significativamente (p < 0,05) a medida que aumenta el tiempo y la temperatura de horneado, y la degradación de los compuestos bioactivos se establece en una cinética de primer orden R2 > 0,83. Los valores de resistencia térmica (z) y energía de activación (Ea) durante el proceso de horneado del pan mostraron que los β-caroteno son un fitoquímico térmico inestable, seguidos por la provitamina A, α-caroteno, licopeno y β-criptoxantina. En esta investigación se puede concluir que los resultados serían importantes para el diseño y optimización de la cocción del pan, ya que permitirá maximizar los niveles de estos micronutrientes.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2755
dc.identifier10.22430/22565337.2755
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7878
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2755/3005
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2755/3068
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2755/3069
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2755/3106
dc.relation/*ref*/Grand View Research, “Bakery Products Market Size, Share & Trends Analysis Report By Distribution Channel (Specialty Stores, Convenience Stores), By Product (Cakes & Pastries, Breads & Rolls, Cookies, Tortillas, Pretzels), And Segment Forecasts, 2019 – 2025,” San Francisco, California, Rep. GVR-3-68038-229-7, 2017. Available: https://www.grandviewresearch.com/industry-analysis/bakery-products-market/
dc.relation/*ref*/M. Alda, “Bread – Worldwide,” Statista.com. Accessed: Apr. 16, 2023. Available: https://www.statista.com/outlook/40050100/100/bread/worldwide/
dc.relation/*ref*/B. Sayed-Ahmad et al., “Effect of addition of fennel (Foeniculum vulgare L.) on the quality of protein bread,” Proc. Latv. Acad. Sci. Sect. B Nat. Exact Appl. Sci., vol. 71, no. 6, pp. 509–514, Jan. 2017. https://doi.org/10.1515/prolas-2017-0088
dc.relation/*ref*/R. Tolve et al., “Wheat bread fortification by grape pomace powder: Nutritional, technological, antioxidant, and sensory properties,” Foods, vol. 10, no. 1, p. 75, Jan. 2017. https://doi.org/10.3390/foods10010075
dc.relation/*ref*/Z. E. Martins, O. Pinho, and I. M. P. L. V. O. Ferreira, “Food industry by-products used as functional ingredients of bakery products,” Trends Food Sci. Technol., vol. 67, pp. 106–128, Sep. 2017. https://doi.org/10.1016/j.tifs.2017.07.003
dc.relation/*ref*/D. Santos, J. A. Lopes da Silva, and M. Pintado, “Fruit and vegetable by-products’ flours as ingredients: A review on production process, health benefits and technological functionalities,” LWT, vol. 154, p. 112707, Jan. 2022. https://doi.org/10.1016/j.lwt.2021.112707
dc.relation/*ref*/J. Tian et al., “Domestic cooking methods affect the phytochemical composition and antioxidant activity of purple-fleshed potatoes,” Food Chem., vol. 197, pp. 1264–1270, Apr. 2016. https://doi.org/10.1016/j.foodchem.2015.11.049
dc.relation/*ref*/C. M. Ajila, K. Leelavathi, and U. J. S. Prasada Rao, “Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder,” J. Cereal Sci., vol. 48, no. 2, pp. 319–326, Sep. 2008. https://doi.org/10.1016/j.jcs.2007.10.001
dc.relation/*ref*/V. Nour, M. E. Ionica, and I. Trandafir, “Bread enriched in lycopene and other bioactive compounds by addition of dry tomato waste,” J. Food Sci. Technol., vol. 52, no. 12, pp. 8260–8267, Jul. 2015. https://doi.org/10.1007/s13197-015-1934-9
dc.relation/*ref*/L. C. R. dos Reis, E. M. P. Facco, M. Salvador, S. H. Flôres, and A. de O. Rios, “Characterization of orange passion fruit peel flour and its use as an ingredient in bakery products,” J. Culin. Sci. Technol., vol. 18, no. 3, pp. 214–230, Dec. 2018. https://doi.org/10.1080/15428052.2018.1564103
dc.relation/*ref*/L. E. Ordoñez-Santos, J. Esparza-Estrada, and P. Vanegas-Mahecha, “Potencial agroindustrial del epicarpio de mandarina como alternativa de colorante natural en pan,” TecnoLógicas, vol. 23, no. 48, pp. 17–29, 2020. https://doi.org/10.22430/22565337.1465
dc.relation/*ref*/L. E. Ordóñez-Santos, J. Esparza-Estrada, and P. Vanegas-Mahecha, “Ultrasound-assisted extraction of total carotenoids from mandarin epicarp and application as natural colorant in bakery products,” Lebenson. Wiss. Technol., vol. 139, p. 110598, Mar. 2021. https://doi.org/10.1016/j.lwt.2020.110598
dc.relation/*ref*/A. Putranto, X. D. Chen, and W. Zhou, “Bread baking and its color kinetics modeled by the spatial reaction engineering approach (S-REA),” Food Res. Int., vol. 71, pp. 58–67, May. 2015. https://doi.org/10.1016/j.foodres.2015.01.029
dc.relation/*ref*/S. Onacik-Gür, A. Szafrańska, M. Roszko, and S. Stępniewska, “Interaction of dough preparation method, green tea extract and baking temperature on the quality of rye bread and acrylamide content,” LWT, vol. 154, p. 112759, Jan. 2022. https://doi.org/10.1016/j.lwt.2021.112759
dc.relation/*ref*/P. N. Panirani, H. Darvishi, A. Hosainpour, and N. Behroozi-Khazaei, “Comparative study of different bread baking methods: Combined ohmic – infrared, ohmic – conventional, infrared – conventional, infrared, and conventional heating,” Innov. Food Sci. Emerg. Technol., vol. 86, p. 103349, Jun. 2023. https://doi.org/10.1016/j.ifset.2023.103349
dc.relation/*ref*/A. Fratianni et. al., “Kinetics of carotenoids degradation and furosine formation in dried apricots (Prunus armeniaca L.),” Food Res. Int., vol. 99, pp. 862–867, Sep. 2017. https://doi.org/10.1016/j.foodres.2016.12.009
dc.relation/*ref*/I. Gheonea (Dima) et. al., “Investigations on thermostability of carotenoids from tomato peels in oils using a kinetic approach,” J. Food Process. Preserv., vol. 44, no. 1, p. e14303 Jan. 2020. https://doi.org/10.1111/jfpp.14303
dc.relation/*ref*/L. E. Ordóñez-Santos, and J. Martínez-Girón, “Thermal degradation kinetics of carotenoids, vitamin C and provitamin A in tree tomato juice,” Int. J. Food Sci. Technol., vol. 55, no. 1, pp. 201–210, Jun. 2020. https://doi.org/10.1111/ijfs.14263
dc.relation/*ref*/AOAC, “Official Methods of Analysis of Aoac International, Agricultural Chemicals, Contaminants, Drugs,” W. Horwitz, Eds, 17th Edn, Maryland, EE.UU, 2000. https://books.google.com.co/books/about/Official_Methods_of_Analysis_of_AOAC_Int.html?id=Bbn0oAEACAAJ&redir_esc=y
dc.relation/*ref*/E. Lara, P. Cortés, V. Briones, and M. Perez, “Structural and physical modifications of corn biscuits during baking process,” LWT - Food Sci Techno., vol.44, no. 3, pp. 622–630, Apr. 2011. https://doi.org/10.1016/j.lwt.2010.10.007
dc.relation/*ref*/L. E. Ordóñez-Santos, J. Martínez-Girón, and M. E. Arias-Jaramillo, “Effect of ultrasound treatment on visual color, vitamin C, total phenols, and carotenoids content in Cape gooseberry juice,” Food Chem., vol. 233, pp. 96–100, Oct. 2017. https://doi.org/10.1016/j.foodchem.2017.04.114
dc.relation/*ref*/C. Dhuique-Mayer, M. Tbatou, M. Carail, C. Caris-Veyrat, M. Dornier, and M. J. Amiot, “Thermal degradation of antioxidant micronutrients in citrus juice: Kinetics and newly formed compounds,” J. Agric. Food Chem., vol. 55, no. 10, pp. 4209–4216, Apr. 2007. https://doi.org/10.1021/jf0700529
dc.relation/*ref*/X. Sui, P. Y. Yap, and W. Zhou, “Anthocyanins during baking: Their degradation kinetics and impacts on color and antioxidant capacity of bread,” Food Bioproc. Tech., vol. 8, pp. 983–994, Jan. 2015. https://doi.org/10.1007/s11947-014-1464-x
dc.relation/*ref*/A. Hidalgo, A. Brandolini, and C. Pompei, “Carotenoids evolution during pasta, bread and water biscuit preparation from wheat flours,” Food Chem., vol. 121, no. 3, pp. 746-751, Aug. 2010. https://doi.org/10.1016/j.foodchem.2010.01.034
dc.relation/*ref*/E.-S. M. Abdel-Aal, L. Mats, and I. Rabalski, “Identification of carotenoids in hairless canary seed and the effect of baking on their composition in bread and muffin products,” Molecules, vol. 27, no. 4, p. 1307, Feb. 2022. https://doi.org/10.3390/molecules27041307
dc.relation/*ref*/J. Liu, A. Zamora, M. Castillo, and J. Saldo, “Using front-face fluorescence spectroscopy for prediction of retinol loss in milk during thermal processing,” LWT, vol. 87, pp. 151–157, Jan. 2018. https://doi.org/10.1016/j.lwt.2017.08.073
dc.relation/*ref*/C. Dincer, M. Karaoglan, F. Erden, N. Tetik, A. Topuz, and F. Ozdemir, “Effects of baking and boiling on the nutritional and antioxidant properties of sweet potato [Ipomoea batatas (L.) lam.] cultivars,” Plant Foods Hum. Nutr., vol. 66, pp. 341–347, Nov. 2011. https://doi.org/10.1007/s11130-011-0262-0
dc.relation/*ref*/E. Muntean, “Effect of Thermal Processing on Carotenoids in Fortified Bread,” Engineering Proceedings, vol. 37, no. 1, p. 70, May. 2023. https://doi.org/10.3390/ECP2023-14694
dc.relation/*ref*/A. Saxena, T. Maity, P. S. Raju, and A. S. Bawa, “Degradation kinetics of colour and total carotenoids in jackfruit (Artocarpus heterophyllus) bulb slices during hot air drying,” Food Bioproc. Tech., vol. 5, pp. 672–679, Jul. 2010. https://doi.org/10.1007/s11947-010-0409-2
dc.relation/*ref*/A. Fratianni et al., “Kinetics of carotenoids degradation and furosine formation in dried apricots (Prunus armeniaca L.),” Food Res. Int., vol. 99, pp. 862–867, Sep. 2017. https://doi.org/10.1016/j.foodres.2016.12.009
dc.relation/*ref*/Z. Kotíková, M. Šulc, J. Lachman, V. Pivec, M. Orsák, and K. Hamouz, “Carotenoid profile and retention in yellow-, purple- and red-fleshed potatoes after thermal processing,” Food Chem., vol. 197, pp. 992–1001, Apr. 2016. https://doi.org/10.1016/j.foodchem.2015.11.072
dc.relation/*ref*/Q. Lu, Y. Peng, C. Zhu, and S. Pan, “Effect of thermal treatment on carotenoids, flavonoids and ascorbic acid in juice of orange cv. Cara Cara,” Food Chem., vol. 265, pp. 39–48, Nov. 2018.https://doi.org/10.1016/j.foodchem.2018.05.072
dc.relation/*ref*/X. Ya-dong et al. “Thermal degradation kinetics of all-trans and cis-carotenoids in a light-induced model system,” Food Chem., vol. 239, pp. 360–68, Jan. 2018. https://doi.org/10.1016/j.foodchem.2017.06.107
dc.relation/*ref*/I. Gheonea (Dima) et al., “Investigations on thermostability of carotenoids from tomato peels in oils using a kinetic approach,” J. Food Process. Preserv., vol. 44, no. 1, Jan. 2020. https://doi.org/10.1111/jfpp.14303
dc.relation/*ref*/D. C. Murador, D. T. da Cunha, and V. Vera de Rosso, “Effects of cooking techniques on vegetable pigments: A meta-analytic approach to carotenoid and anthocyanin levels,” Food Res. Int., vol. 65, pp. 177–183, Nov. 2014. https://doi.org/10.1016/j.foodres.2014.06.015
dc.relation/*ref*/M. I. Minguez-Mosquera, and M. Jaren-Galan, “Kinetics of the decolouring of carotenoid pigments,” J. Sci. Food Agric., vol. 67, no. 2, pp. 153–161, Feb. 1995. https://doi.org/10.1002/jsfa.2740670203
dc.relation/*ref*/L. K. Henry, G. L. Catignani, and S. J. Schwartz, “Oxidative degradation kinetics of lycopene, lutein, and 9‐cis and all‐trans β‐carotene,” J. Am. Oil Chem. Soc., vol. 75, no. 7, pp. 823–829, Jul. 1998. https://doi.org/10.1007/s11746-998-0232-3
dc.relation/*ref*/C. S. Boon, D. J. McClements, J. Weiss, and E. A. Decker, “Factors influencing the chemical stability of carotenoids in foods,” Crit. Rev. Food Sci. Nutr., vol. 50, no. 6, pp. 515–532, Jun. 2010. https://doi.org/10.1080/10408390802565889
dc.relation/*ref*/D.B. Rodriguez-Amaya, “Natural food pigments and colorants,” Curr. Opin. Food Sci., vol. 7, pp. 20–26, Feb. 2016. https://doi.org/10.1016/j.cofs.2015.08.004
dc.relation/*ref*/
dc.rightsDerechos de autor 2023 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 26 No. 58 (2023); e2755en-US
dc.sourceTecnoLógicas; Vol. 26 Núm. 58 (2023); e2755es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectRetinol equivalent activityen-US
dc.subjectkinetic energyen-US
dc.subjectβ-caroteneen-US
dc.subjectentropy codingen-US
dc.subjecthalf-life timeen-US
dc.subjectActividad equivalente de retinoles-ES
dc.subjectenergía cinéticaes-ES
dc.subjectβ-carotenoes-ES
dc.subjectcondición de entropíaes-ES
dc.subjecttiempo de vida mediaes-ES
dc.titleEffect of Baking Temperature on Carotenoids and Provitamin A in Bread made with Mandarin (Citrus reticulata) Epicarp Extracten-US
dc.titleEfecto de la temperatura de horneado en carotenoides y provitamina A en pan elaborado con extracto de epicarpio de mandarina (Citrus reticulata)es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
2755-MPU-VF.pdf
Tamaño:
369.63 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
344275988003.epub
Tamaño:
3.1 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
344275988015.xml
Tamaño:
100.34 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
3106.html
Tamaño:
138.31 KB
Formato:
Hypertext Markup Language