Power Losses Reduction in Three-Phase Unbalanced Distribution Networks Using a Convex Optimization Model in the Complex Domain

dc.creatorMontoya-Giraldo*, Oscar Danilo
dc.creatorRamírez-Vanegas, Carlos Alberto
dc.creatorGonzález-Granada, José Rodrigo
dc.date2024-04-08
dc.date.accessioned2025-10-01T23:53:10Z
dc.descriptionThis article presents a solution methodology to minimize power losses in three-phase unbalanced distribution networks. This approach involved an efficient complex-domain model that is categorized under mixed-integer convex optimization. The methodology employed consisted of efficient load rotation at each constant power node via a three-phase rotation matrix that allows defining each load connection to minimize the expected power imbalance at the terminals of the substation, as well as the total grid power losses, and improve voltage profile performance at each system phase. The load imbalance, expressed as a percentage, can be defined as a function of the active, reactive, or apparent power. In addition, considering the complex-domain representation of three-phase electrical networks under steady-state conditions, a mixed-integer convex model was formulated to reduce the power imbalances. With the purpose of determining the initial and final power losses of these distribution systems, the successive approximations method was employed to address the three-phase power flow problem. As a result, numerical validations in the IEEE 25-bus system and a 35-node three-phase feeder showed that the final active power losses vary depending on the objective function analyzed. Therefore, for the test feeders studied, it is necessary to evaluate each objective function, with the aim of finding the one that yields the best numerical results. Power losses reductions of about 3.8056 % and 6.8652 % were obtained for both test feeders via the proposed optimization methodology. All numerical validations were performed in the Julia programming environment, using the JuMP optimization tool and the HiGHS solver.en-US
dc.descriptionEn este artículo se presenta una metodología para la minimización de las pérdidas de potencia activa en sistemas de distribución trifásicos desbalanceados. Este enfoque utilizó un modelo eficiente en el dominio complejo que pertenece a la categoría de optimización convexa de enteros mixtos. La metodología empleada consistió en la rotación de las cargas en cada nodo de potencia constante a través de una matriz trifásica de rotación que permitió definir cada conexión de carga. Lo anterior con el objetivo de minimizar los desbalances de potencia en los terminales de la subestación y las pérdidas de potencia totales, y mejorar los perfiles de tensión en cada una de las fases del sistema. El desbalance de cargas, expresado como un porcentaje, puede definirse en función de las potencia activa, reactiva o aparente. Además, se formuló un modelo entero mixto convexo con el propósito de minimizar los desbalances de potencia, considerando la representación en el dominio complejo de las redes eléctricas trifásicas en condiciones estacionarias. En aras de determinar las pérdidas de potencia iniciales y finales de estas redes, se empleó el método de aproximaciones sucesivas para resolver el problema de flujo de potencia trifásico. Como resultado, las validaciones numéricas realizadas en el sistema IEEE de 25 nodos y en una red trifásica de 35 nodos mostraron que las pérdidas finales de potencia activa varían dependiendo de la función objetivo analizada. Por lo tanto, para los alimentadores de prueba estudiados, es necesario evaluar cada función objetivo, en aras de encontrar la que produzca los mejores resultados numéricos. Se obtuvieron reducciones de 3.8056 % y 6.8652 % en las pérdidas de potencia para los dos sistemas de prueba mediante la metodología de optimización propuesta. Todas las validaciones numéricas se realizaron en el entorno de programación Julia, utilizando la herramienta de optimización JuMP y el solucionador HiGHS.es-ES
dc.formatapplication/pdf
dc.formatimage/jpeg
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2903
dc.identifier10.22430/22565337.2903
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7889
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2903/3142
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2903/3143
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2903/3251
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2903/3252
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2903/3284
dc.relation/*ref*/F. E. Postigo Marcos et al., “A Review of Power Distribution Test Feeders in the United States and the Need for Synthetic Representative Networks,” Energies, vol. 10, no. 11, p. 1896, Nov. 2017. https://doi.org/10.3390/en10111896
dc.relation/*ref*/D. Ramere, and O. T. Laseinde, “Improving the efficiency of medium voltage (MV) distribution lines using risk matrix for optimized maintenance,” in Materials Today: Proceedings, Aug. 2023. https://doi.org/10.1016/j.matpr.2023.08.149
dc.relation/*ref*/M. R. Elkadeem, M. A. Alaam, and A. M. Azmy, “Improving performance of underground MV distribution networks using distribution automation system: A case study,” Ain Shams Engineering Journal, vol. 9, no. 4, pp. 469–481, Dec. 2018. https://doi.org/10.1016/j.asej.2016.04.004
dc.relation/*ref*/B. Pan, Y. Zhang, X. Gui, Y. Wan, and G. Wang, “Analysis and Research of Three-phase Unbalance in Distribution Transformers,” in IOP Conference Series: Earth and Environmental Science, 2019, vol. 252. https://doi.org/10.1088/1755-1315/252/3/032196
dc.relation/*ref*/N. X. Cuong, L. A. Tuan, and Y. D. Nhu, “Effect of Voltage Unbalances on the Performance of a Three-phase Transformer,” in IOP Conference Series: Earth and Environmental Science, 2022, vol. 1111. https://doi.org/10.1088/1755-1315/1111/1/012050
dc.relation/*ref*/A. Garcés, J. C. Castaño, and M. A. Rios, “Phase Balancing in Power Distribution Grids: A Genetic Algorithm with a Group-Based Codification,” in Handbook of Optimization in Electric Power Distribution Systems. Energy Systems. M. Resener, S. Rebennack, P. M. Pardalos, and S. Haffner, Eds., Switzerland: Springer, Cham. 2020, pp. 325–342. https://doi.org/10.1007/978-3-030-36115-0_11
dc.relation/*ref*/G. Grigoraș, N. Bogdan-Constantin, M. Gavrilaș, I. Triștiu, and C. Bulac, “Optimal Phase Load Balancing in Low Voltage Distribution Networks Using a Smart Meter Data-Based Algorithm,” Mathematics, vol. 8, p. 549, Apr. 2020. https://doi.org/10.3390/math8040549
dc.relation/*ref*/M. Granada Echeverri, R. A. Gallego Rendón, and J. M. López Lezama, “Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm,” Ingenierı́a y Ciencia, vol. 8, no. 15, pp. 121–140, Jun. 2012. https://doi.org/10.17230/ingciencia.8.15.6
dc.relation/*ref*/N. Toma, O. Ivanov, B. Neagu, and M. Gavrila, “A PSO Algorithm for Phase Load Balancing in Low Voltage Distribution Networks,” in 2018 International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 2018. https://doi.org/10.1109/ICEPE.2018.8559805
dc.relation/*ref*/D. P. Bohórquez-Álvarez, K. D. Niño-Perdomo, and O. D. Montoya, “Optimal Load Redistribution in Distribution Systems Using a Mixed-Integer Convex Model Based on Electrical Momentum,” Information, vol. 14, no. 4, p. 229, Apr. 2023. https://doi.org/10.3390/info14040229
dc.relation/*ref*/O. D. Montoya, L. F. Grisales-Noreña, and E. Rivas-Trujillo, “Approximated Mixed-Integer Convex Model for Phase Balancing in Three-Phase Electric Networks,” Computers, vol. 10, no. 9, p. 109, Aug. 2021. https://doi.org/10.3390/computers10090109
dc.relation/*ref*/B. Cortés-Caicedo, L. S. Avellaneda-Gómez, O. D. Montoya, L. Alvarado-Barrios, and H. R. Chamorro, “Application of the Vortex Search Algorithm to the Phase-Balancing Problem Distribution Systems,” Energies, vol. 14, no. 5, p. 1282, Feb. 2021. https://doi.org/10.3390/en14051282
dc.relation/*ref*/Y. Tuppadung, and W. Kurutach, “The Modified Particle Swarm Optimization for Phase Balancing,” in TENCON 2006 - 2006 IEEE Region 10 Conference, Hong Kong, China, 2006, pp. 1-4. https://doi.org/10.1109/TENCON.2006.344014
dc.relation/*ref*/M. E. Hassan, M. Najjar, and R. Tohme, “A Practical Way to Balance Single Phase Loads in a Three Phase System at Distribution and Unit Level,” Renewable Energy and Power Quality Journal, vol. 20, pp. 173–177, Sep. 2022. https://doi.org/10.24084/repqj20.255
dc.relation/*ref*/A. Garces, "A Linear Three-Phase Load Flow for Power Distribution Systems," IEEE Transactions on Power Systems, vol. 31, no. 1, pp. 827-828, Jan. 2016. https://doi.org/10.1109/TPWRS.2015.2394296
dc.relation/*ref*/Q. Huangfu, and J. A. J. Hall, “Parallelizing the dual revised simplex method,” Mathematical Programming Computation, vol. 10, pp. 119–142, Mar. 2018. https://doi.org/10.1007/s12532-017-0130-5
dc.relation/*ref*/J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh approach to numerical computing,” SIAM Rev. Soc. Ind. Appl. Math. vol. 59, no. 1 pp. 65–98, 2017. https://doi.org/10.1137/141000671
dc.relation/*ref*/M. Lubin, O. Dowson, J. D. Garcia, J. Huchette, B. Legat, and J. P. Vielma, “JuMP 1.0: Recent improvements to a modeling language for mathematical optimization,” Mathematical Programming Computation, vol. 15, no. 3, pp. 581–589, 2023. https://doi.org/10.1007/s12532-023-00239-3
dc.relation/*ref*/
dc.rightsDerechos de autor 2024 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 27 No. 59 (2024); e2903en-US
dc.sourceTecnoLógicas; Vol. 27 Núm. 59 (2024); e2903es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectPower losses reductionen-US
dc.subjectmixed-integer convex formulationen-US
dc.subjectpower imbalancesen-US
dc.subjectthree-phase power flow solutionen-US
dc.subjectnumerical analysisen-US
dc.subjectcomplex domain optimization modelen-US
dc.subjectReducción de pérdidas de potenciaes-ES
dc.subjectformulación convexa de enteros mixtoses-ES
dc.subjectdesbalance de potenciases-ES
dc.subjectsolución de flujo de potencia trifásicoes-ES
dc.subjectanálisis numéricoes-ES
dc.subjectmodelo de optimización en el dominio complejoes-ES
dc.titlePower Losses Reduction in Three-Phase Unbalanced Distribution Networks Using a Convex Optimization Model in the Complex Domainen-US
dc.titleReducción de pérdidas de potencia en sistemas de distribución trifásicos desbalanceados usando un modelo de optimización convexa en el dominio complejoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 5 de 5
Cargando...
Miniatura
Nombre:
2903-MPU-VF.pdf
Tamaño:
680.49 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
2903_GraphicalAbstract.jpg
Tamaño:
190.3 KB
Formato:
Joint Photographic Experts Group/JPEG File Interchange Format (JFIF)
Cargando...
Miniatura
Nombre:
344276634004.xml
Tamaño:
87.51 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
344276634004.epub
Tamaño:
885.58 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
3284.html
Tamaño:
155.43 KB
Formato:
Hypertext Markup Language