Influence of Operational Parameters of Microwave-Assisted Hydrothermal Carbonization for the obtention of High Energetic Value Products: A Review

dc.creatorPinto-Altamiranda , Sania
dc.creatorAristizábal Restrepo , Johan S.
dc.creatorGonzález , María E.
dc.creatorGutiérrez , Omar D.
dc.creatorBarrera-Causil , Carlos
dc.date2022-09-01
dc.date.accessioned2025-10-01T23:52:47Z
dc.descriptionAgroindustry generates a large amount of organic waste, which is considered suitable biomass for energy use, one of the thermochemical conversion technologies that make it possible to obtain a product with a high energy value is hydrothermal carbonization, which can be microwave-assisted or conventional heating. The objective of this article is to collect information on the influence of the operating parameters in obtaining higher yields and carbon contents of hydrochar in the microwave-assisted hydrothermal carbonization (MAHTC) process, and in turn to demonstrate such influence of the parameters through a meta-analysis. For the meta-analysis, the collected bibliographic information was taken and evaluated through a generalized linear mixed-type model, which allowed concluding that temperature and time influence carbon content, while yield would be mainly influenced by time of reaction. In general terms, the reaction temperature parameter is highlighted as the most important factor in hydrothermal carbonization, since it determines the physicochemical properties of hydrochar, that is, with the information presented here, it is intended to encourage the use of agro-industrial residues to be transformed into products with high energy value, and thus provide a solution to the problem of climate change, promoting the sustainable development of the agricultural sector.en-US
dc.descriptionLa agroindustria genera gran cantidad de residuos de tipo orgánico, los cuales son considerados una biomasa apta para aprovechamiento energético. Una de las tecnologías de conversión termoquímica que permite obtener un producto de alto valor energético es la carbonización hidrotermal, la cual puede ser asistida por microondas o por horno convencional. El objetivo de este artículo fue recopilar información sobre la influencia que tienen los parámetros operativos en la obtención de mayores rendimientos y contenidos de carbono del hidrochar en el proceso de carbonización hidrotermal asistida por microondas (MAHTC) y, a su vez, demostrar tal influencia de los parámetros mediante un metaanálisis. Para el metaanálisis se tomó la información bibliográfica recopilada y se evaluó a través de un modelo lineal generalizado tipo mixto. Los resultados del modelo evidenciaron que la temperatura y el tiempo ejercen influencia en el contenido de carbono, mientras que el rendimiento estaría influenciado, principalmente, por el tiempo de reacción. En términos generales, se resalta al parámetro de la temperatura de reacción como el factor más importante en la carbonización hidrotermal, ya que determina las propiedades fisicoquímicas del hidrochar, es decir que con la información aquí presentada se pretende incentivar el aprovechamiento de los residuos agroindustriales para ser transformados en productos de alto valor energético y, de este modo, brindar una solución a la problemática de cambio climático, propiciando el desarrollo sostenible del sector agrícola.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2265
dc.identifier10.22430/22565337.2265
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7816
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2265/2534
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2265/2535
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2265/2536
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2265/2540
dc.relation/*ref*/A. Savino; G. Solórzano; C. Quispe; M. C. Correal, Perspectiva de la Gestión de Residuos en América Latina y el Caribe, Programa de las Naciones Unidas para el Medio Ambiente, 2018. https://www.unep.org/es/resources/informe/perspectiva-de-la-gestion-de-residuos-en-america-latina-y-el-caribe
dc.relation/*ref*/R. Rithuparna; V. Jittin; A. Bahurudeen, “Influence of different processing methods on the recycling potential of agro-waste ashes for sustainable cement production: A review”, J. Clean. Prod., vol. 316, p. 128242, Sep. 2021. https://doi.org/10.1016/j.jclepro.2021.128242
dc.relation/*ref*/Organización de las Naciones Unidas para la Alimentación y la Agricultura, El estado mundial de la agricultura y la alimentación 2019, vol. 32. Organización de las Naciones Unidas para la Alimentación y la Agricultura, 2019. https://doi.org/10.4060/CA6030ES
dc.relation/*ref*/Organización de las Naciones Unidas para la Alimentación y la Agricultura, Pérdidas y Desperdicios de Alimentos en América Latina y el Caribe, 2016. https://www.fao.org/publications/card/es/c/I5504S/
dc.relation/*ref*/Organización de las Naciones Unidas para la Alimentación y la Agricultura, El estado mundial de la agricultura y la alimentación 2020, vol. 32. Organización de las Naciones Unidas para la Alimentación y la Agricultura, 2020. https://doi.org/10.4060/cb1447es
dc.relation/*ref*/The United Nations Environment Programme, “Emissions Gap Emissions Gap Report 2019”, 2019. https://www.unep.org/resources/emissions-gap-report-2019
dc.relation/*ref*/M. Pateiro et al., “Evaluation of the protein and bioactive compound bioaccessibility/bioavailability and cytotoxicity of the extracts obtained from aquaculture and fisheries by-products”, in Advances in Food and Nutrition Research, Elsevier, 2020, vol. 22, pp. 97–125. https://doi.org/10.1016/bs.afnr.2019.12.002
dc.relation/*ref*/S. Kamiloglu; M. Tomas; T. Ozdal; P. Yolci-Omeroglu; E. Capanoglu, “Bioactive component analysis”, in Innovative Food Analysis, Elsevier, 2021, pp. 41–65. https://doi.org/10.1016/B978-0-12-819493-5.00002-9
dc.relation/*ref*/S. Petrulyte; D. Petrulis, “Modern textiles and biomaterials for healthcare”, in Handbook of Medical Textiles, Elsevier, 2011, pp. 1–35. https://doi.org/10.1533/9780857093691.1.3
dc.relation/*ref*/M. Kumar; A. O. Oyedun; A. Kumar, “A review on the current status of various hydrothermal technologies on biomass feedstock”, Renew. Sustain. Energy Rev., vol. 81, part. 2, pp. 1742–1770, Jan. 2018. https://doi.org/10.1016/j.rser.2017.05.270
dc.relation/*ref*/Z. Anwar; M. Gulfraz; M. Irshad, “Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review”, J. Radiat. Res. Appl. Sci., vol. 7, no. 2, pp. 163–173, Apr. 2014, https://doi.org/10.1016/j.jrras.2014.02.003
dc.relation/*ref*/T. P. T. Pham; R. Kaushik; G. K. Parshetti; R. Mahmood; R. Balasubramanian, “Food waste-to-energy conversion technologies: Current status and future directions”, Waste Manag., vol. 38, pp. 399–408, Apr. 2015, https://doi.org/10.1016/j.wasman.2014.12.004
dc.relation/*ref*/A. Pandey; T. Bhaskar; M. Stöcker; R. K. Sukumaran, Recent Advances in Thermo-Chemical Conversion of Biomass. Elsevier, 2015. https://doi.org/10.1016/C2013-0-00403-3
dc.relation/*ref*/K. Tekin; S. Karagöz; S. Bektaş, “A review of hydrothermal biomass processing”, Renew. Sustain. Energy Rev., vol. 40, pp. 673–687, Dec. 2014. https://doi.org/10.1016/j.rser.2014.07.216
dc.relation/*ref*/D. A. Iryani; S. Kumagai; M. Nonaka; K. Sasaki; T. Hirajima, “Hydrothermal carbonization kinetics of sugarcane bagasse treated by hot compressed water under variabel temperature conditions”, ARPN J. Eng. Appl. Sci., vol. 11, no. 7, pp. 4833–4839, Apr. 2016. http://repository.lppm.unila.ac.id/1111/1/jeas_0416_4033_Publikasi%20Dewi.pdf
dc.relation/*ref*/M.-M. Titirici; M. Antonietti; N. Baccile, “Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses”, Green Chem., vol. 10, no. 11, p. 1204, May. 2008. https://doi.org/10.1039/b807009a
dc.relation/*ref*/R. Bolaños Díaz; M. Calderón Cahua, “Introducción al meta-análisis tradicional”, Rev. Gastroenterol. del Perú, vol. 34, no. 1, pp. 45–51, Ene. 2014.
dc.relation/*ref*/The R Development Core Team, R: A Language and Environment for Statistical Computing. Proyecto GNU, 2008. http://softlibre.unizar.es/manuales/aplicaciones/r/fullrefman.pdf
dc.relation/*ref*/H. Sayğılı, “Hydrothermal synthesis of magnetic nanocomposite from biowaste matrix by a green and one-step route: Characterization and pollutant removal ability”, Bioresour. Technol., vol. 278, pp. 242–247, Apr. 2019. https://doi.org/10.1016/j.biortech.2019.01.103
dc.relation/*ref*/X. Chen; Q. Lin; R. He; X. Zhao; G. Li, “Hydrochar production from watermelon peel by hydrothermal carbonization”, Bioresour. Technol., vol. 241, pp. 236–243, Oct. 2017. https://doi.org/10.1016/j.biortech.2017.04.012
dc.relation/*ref*/L. Cao et al., “Microwave-assisted low-temperature hydrothermal treatment of red seaweed (Gracilaria lemaneiformis) for production of levulinic acid and algae hydrochar”, Bioresour. Technol., vol. 273, pp. 251–258, Feb. 2019. https://doi.org/10.1016/j.biortech.2018.11.013
dc.relation/*ref*/T. Werpy; G. Petersen, “Top Value Added Chemicals from Biomass: Volume I -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas”, Office of Scientific and Technical Information, Golden, Aug. 2004. https://doi.org/10.2172/15008859
dc.relation/*ref*/J. Xu; J. Zhang; J. Huang; W. He; G. Li, “Conversion of phoenix tree leaves into hydro-char by microwave-assisted hydrothermal carbonization”, Bioresour. Technol. Reports, vol. 9, p. 100353, Feb. 2020. https://doi.org/10.1016/j.biteb.2019.100353
dc.relation/*ref*/Y. Gao; J. Remón; A. S. Matharu, “Microwave-assisted hydrothermal treatments for biomass valorisation: a critical review”, Green Chem., vol. 23, no. 10, pp. 3502–3525, 2021. https://doi.org/10.1039/D1GC00623A
dc.relation/*ref*/L. Zhan; L. Jiang; Y. Zhang; B. Gao; Z. Xu, “Reduction, detoxification and recycling of solid waste by hydrothermal technology: A review”, Chem. Eng. J., vol. 390, p. 124651, Jun. 2020. https://doi.org/10.1016/j.cej.2020.124651
dc.relation/*ref*/Y. Li et al., “Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals”, Bioresour. Technol., vol. 273, pp. 136–143, Feb. 2019. https://doi.org/10.1016/j.biortech.2018.10.056
dc.relation/*ref*/S. E. Elaigwu; G. M. Greenway, “Microwave-assisted and conventional hydrothermal carbonization of lignocellulosic waste material: Comparison of the chemical and structural properties of the hydrochars”, J. Anal. Appl. Pyrolysis, vol. 118, pp. 1–8, Mar. 2016. https://doi.org/10.1016/j.jaap.2015.12.013
dc.relation/*ref*/J. Remón; J. Randall; V. L. Budarin; J. H. Clark, “Production of bio-fuels and chemicals by microwave-assisted, catalytic, hydrothermal liquefaction (MAC-HTL) of a mixture of pine and spruce biomass”, Green Chem., vol. 21, no. 2, pp. 284–299, 2019. https://doi.org/10.1039/C8GC03244K
dc.relation/*ref*/T. Longprang; D. Jaruwat; P. Udomsap; N. Chollacoop; A. Eiad-ua, “Influence of Acid Additive on Nanoporous Carbon Materials via HTC for Catalyst Support”, Mater. Today Proc., vol. 23, part. 4, pp. 762–766, Jul. 2020. https://doi.org/10.1016/j.matpr.2019.12.271
dc.relation/*ref*/W.-H. Chen; S.-C. Ye; H.-K. Sheen, “Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating”, Bioresour. Technol., vol. 118, pp. 195–203, Aug. 2012. https://doi.org/10.1016/j.biortech.2012.04.101
dc.relation/*ref*/S. Nizamuddin et al., “An overview of microwave hydrothermal carbonization and microwave pyrolysis of biomass”, Rev. Environ. Sci. Bio/Technology, vol. 17, pp. 813–837, Dec. 2018. https://doi.org/10.1007/s11157-018-9476-z
dc.relation/*ref*/L. Suárez; I. Benavente-Ferraces; C. Plaza; S. de Pascual-Teresa; I. Suárez-Ruiz; T. A. Centeno, “Hydrothermal carbonization as a sustainable strategy for integral valorisation of apple waste”, Bioresour. Technol., vol. 309, p. 123395, Aug. 2020. https://doi.org/10.1016/j.biortech.2020.123395
dc.relation/*ref*/A. Méndez; G. Gascó; B. Ruiz; E. Fuente, “Hydrochars from industrial macroalgae ‘Gelidium Sesquipedale’ biomass wastes”, Bioresour. Technol., vol. 275, pp. 386–393, Mar. 2019. https://doi.org/10.1016/j.biortech.2018.12.074
dc.relation/*ref*/J. Cai; B. Li; C. Chen; J. Wang; M. Zhao; K. Zhang, “Hydrothermal carbonization of tobacco stalk for fuel application”, Bioresour. Technol., vol. 220, pp. 305–311, Nov. 2016. https://doi.org/10.1016/j.biortech.2016.08.098
dc.relation/*ref*/L. Azaare; M. K. Commeh; A. M. Smith; F. Kemausuor, “Co-hydrothermal carbonization of pineapple and watermelon peels: Effects of process parameters on hydrochar yield and energy content”, Bioresour. Technol. Reports, vol. 15, p. 100720, Sep. 2021. https://doi.org/10.1016/j.biteb.2021.100720
dc.relation/*ref*/O. F. Cruz Jr; J. Silvestre-Albero; M. E. Casco; D. Hotza; C. R. Rambo, “Activated nanocarbons produced by microwave-assisted hydrothermal carbonization of Amazonian fruit waste for methane storage,” Mater. Chem. Phys., vol. 216, pp. 42–46, Sep. 2018. https://doi.org/10.1016/j.matchemphys.2018.05.079
dc.relation/*ref*/Z. Liu; A. Quek; S. Kent Hoekman; R. Balasubramanian, “Production of solid biochar fuel from waste biomass by hydrothermal carbonization”, Fuel, vol. 103, pp. 943–949, Jan. 2013. https://doi.org/10.1016/j.fuel.2012.07.069
dc.relation/*ref*/J. Zhang et al., “Process characteristics for microwave assisted hydrothermal carbonization of cellulose”, Bioresour. Technol., vol. 259, pp. 91–98, Jul. 2018. https://doi.org/10.1016/j.biortech.2018.03.010
dc.relation/*ref*/E. T. Kostas; D. Beneroso; J. P. Robinson, “The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass”, Renew. Sustain. Energy Rev., vol. 77, pp. 12–27, Sep. 2017. https://doi.org/10.1016/j.rser.2017.03.135
dc.relation/*ref*/M. F. Zulkornain et al., “Microwave-assisted Hydrothermal Carbonization for Solid Biofuel Application: A Brief Review”, Carbon Capture Sci. Technol., vol. 1, p. 100014, Dec. 2021. https://doi.org/10.1016/j.ccst.2021.100014
dc.relation/*ref*/S. E. Elaigwu; G. M. Greenway, “Chemical, structural and energy properties of hydrochars from microwave-assisted hydrothermal carbonization of glucose”, Int. J. Ind. Chem., vol. 7, pp. 449–456, Dec. 2016. https://doi.org/10.1007/s40090-016-0081-0
dc.relation/*ref*/S. E. Elaigwu; G. M. Greenway, “Microwave-assisted hydrothermal carbonization of rapeseed husk: A strategy for improving its solid fuel properties”, Fuel Process. Technol., vol. 149, pp. 305–312, Aug. 2016. https://doi.org/10.1016/j.fuproc.2016.04.030
dc.relation/*ref*/K. Kang et al., “Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: Optimization of process parameters and characterization of hydrochar”, Energy, vol. 186, p. 115795, Nov. 2019. https://doi.org/10.1016/j.energy.2019.07.125
dc.relation/*ref*/M. Guiotoku; C. R. Rambo; F. A. Hansel; W. L. E. Magalhães; D. Hotza, “Microwave-assisted hydrothermal carbonization of lignocellulosic materials”, Mater. Lett., vol. 63, no. 30, pp. 2707–2709, Dec. 2009. https://doi.org/10.1016/j.matlet.2009.09.049
dc.relation/*ref*/Y. Shao; Y. Long; H. Wang; D. Liu; D. Shen; T. Chen, “Hydrochar derived from green waste by microwave hydrothermal carbonization”, Renew. Energy, vol. 135, pp. 1327–1334, May 2019. https://doi.org/10.1016/j.renene.2018.09.041
dc.relation/*ref*/L. Kumle; M. L.-H. Võ; D. Draschkow, “Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R”, Behav. Res. Methods, vol. 53, pp. 2528–2543, Dec. 2021. https://doi.org/10.3758/s13428-021-01546-0
dc.relation/*ref*/S. Ferrari; F. Cribari-Neto, “Beta Regression for Modelling Rates and Proportions”, J. Appl. Stat., vol. 31, no. 7, pp. 799–815, Aug. 2010. https://doi.org/10.1080/0266476042000214501
dc.relation/*ref*/M. E. Brooks et al., “glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling”, R J., vol. 9, no. 2, pp. 378–400, 2017, https://doi.org/10.32614/RJ-2017-066
dc.relation/*ref*/
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 25 No. 54 (2022); e2265en-US
dc.sourceTecnoLógicas; Vol. 25 Núm. 54 (2022); e2265es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectAgroindustriaes-ES
dc.subjectaprovechamiento energéticoes-ES
dc.subjectcarbonización hidrotermales-ES
dc.subjecthidrochares-ES
dc.subjectmicroondases-ES
dc.subjectAgroindustryen-US
dc.subjectrenewable energy power generationen-US
dc.subjecthydrothermal carbonizationen-US
dc.subjecthydrocharen-US
dc.subjectmicrowaveen-US
dc.titleInfluence of Operational Parameters of Microwave-Assisted Hydrothermal Carbonization for the obtention of High Energetic Value Products: A Reviewen-US
dc.titleInfluencia de los parámetros operacionales de carbonización hidrotermal asistida por microondas en la obtención de productos de valor energético: una revisiónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
2265_MUP-VF.pdf
Tamaño:
518.63 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
344271354014.epub
Tamaño:
579.8 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
344271354014.xml
Tamaño:
145.2 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2540.html
Tamaño:
182.03 KB
Formato:
Hypertext Markup Language