Implementation of computational methods to estimate lower limb angle amplitudes during squat

dc.creatorBlanco-Díaz, Cristian Felipe
dc.creatorGuerrero-Méndez, Cristian David
dc.creatorDuarte-González, Mario Enrique
dc.creatorJaramillo-Isaza, Sebastián
dc.date2022-03-08
dc.date.accessioned2025-10-01T23:52:46Z
dc.descriptionIn biomechanics, motion capture systems based on video and markers are the most widely used method to estimate kinematic parameters. However, from a technical standpoint, experimental errors in data capture are often related to the masking of markers during motion capture. This phenomenon generates data loss that can affect the analysis of the results. The lack of data is solved by increasing the number of cameras or using additional devices such as inertial sensors. However, those additions increase the experimental cost of this method. Nowadays, new computational methods can be used to solve such problems less expensively. This study implemented two computational methods based on Artificial Neural Networks (ANNs) and Support Vector Regression (SVR) to estimate the amplitude of limb angles during the execution of a movement on a single axis (i.e., the z-axis). The characteristics of the squats were used to train and validate the models. The results obtained include RMSE values lower than 14 (minimum RMSE of 5.35) and CC values close to 0.98. The estimated values are very close to the experimental amplitude angles, and the statistical analyses showed no significant differences between the distributions and means of the estimated amplitude values and their actual counterparts (p-value>0.05). The results show that these methods could help biomechanics researchers perform accurate analyses, decrease the number of cameras needed, reduce uncertainty, and avoid data loss problems.en-US
dc.descriptionEn biomecánica, los sistemas de captura de movimiento basados en video y en marcadores son el método más utilizado para la estimación de parámetros cinemáticos. A nivel técnico, los errores experimentales en la captura de datos suelen estar relacionados con el ocultamiento de los marcadores durante la captura del movimiento. Este fenómeno genera una pérdida de datos que puede afectar el análisis de los resultados. La falta de datos se resuelve aumentando el número de cámaras o utilizando dispositivos adicionales como sensores inerciales. Estas adiciones incrementan el costo experimental de este método. Actualmente, para resolver este tipo de problemas de forma menos costosa, se podrían utilizar nuevos métodos computacionales. Este estudio tiene como objetivo implementar dos métodos computacionales basados en red neuronal artificial (RNA) y regresión de vectores de soporte (RVS) para estimar la amplitud del ángulo de las extremidades durante la ejecución de un movimiento a partir de un solo eje (eje Z). Para entrenar y validar los modelos, se utilizaron características del ejercicio de squat. Los resultados obtenidos incluyeron valores de raíces de error cuadrático medio (RMSE) inferiores a 14 (RMSE mínimo de 5.35) y valores de CC cercanos a 0.98. Los valores estimados son muy cercanos a los ángulos de amplitud experimentales, los análisis estadísticos muestran que no hay diferencias significativas entre las distribuciones y las medias de los valores de amplitud estimados y los valores reales (valor p>0.05). Los resultados demuestran que estos métodos podrían ayudar a los investigadores en biomecánica a realizar análisis precisos, reduciendo el número de cámaras necesarias, reduciendo la incertidumbre y evitando problemas por perdida de datos.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2164
dc.identifier10.22430/22565337.2164
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7807
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2164/2329
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2164/2331
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2164/2332
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2164/2333
dc.relation/*ref*/M. Tits; J. Tilmanne; T. Dutoit, “Robust and automatic motion-capture data recovery using soft skeleton constraints and model averaging”, PLoS One, vol. 13, no. 7, p. e0199744, Jul. 2018. https://doi.org/10.1371/journal.pone.0199744
dc.relation/*ref*/E. Ceseracciu; Z. Sawacha; C. Cobelli, “Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: Proof of concept”, PLoS One, vol. 9, no. 3, p. e87640, Mar. 2014. https://doi.org/10.1371/journal.pone.0087640
dc.relation/*ref*/C. Jakob et al., “Estimation of the Knee Flexion-Extension Angle During Dynamic Sport Motions Using Body-worn Inertial Sensors”, in Proceedings of the 8th International Conference on Body Area Networks, 2013. https://doi.org/10.4108/icst.bodynets.2013.253613
dc.relation/*ref*/Y. Ma; K. Mithraratne; N. Wilson; X. B. Wang; Y. Ma; Y. Zhang, “The Validity and Reliability of a Kinect v2-Based Gait Analysis System for Children with Cerebral Palsy”, Sensors, vol. 19, no. 7, pp. 2-14, Apr. 2019. https://doi.org/10.3390/s19071660
dc.relation/*ref*/B. F. Mentiplay; K. Hasanki; L. G. Perraton; Y. H. Pua; P. C. Charlton; R. A. Clark, “Three-dimensional assessment of Squats and drop jumps using the Microsoft Xbox One Kinect: Reliability and validity”, J. Sports Sci., vol. 36, no. 19, pp. 2202-2209, Mar. 2018. https://doi.org/10.1080/02640414.2018.1445439
dc.relation/*ref*/N. Nakano et al., “Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose with Multiple Video Cameras”, Front. Sport. Act. Living, vol. 2, May. 2020. https://doi.org/10.3389/fspor.2020.00050
dc.relation/*ref*/B. Pueo, “High speed cameras for motion analysis in sports science”, J. Hum. Sport Exerc., vol. 11, no. 1, pp. 53-77, 2016. https://doi.org/10.14198/jhse.2016.111.05
dc.relation/*ref*/L. L. Gómez Echeverry; A. M. Jaramillo Henao; M. A. Ruiz Molina; S. M. Velásquez Restrepo; C. A. Páramo Velásquez; G. J. Silva Bolívar, “Human motion capture and analysis systems: a systematic review”, Prospectiva, vol. 16, no. 2, pp. 24–34, Jul. 2018. https://doi.org/10.15665/rp.v16i2.1587
dc.relation/*ref*/E. Halilaj; A. Rajagopal; M. Fiterau; J. L. Hicks; T. J. Hastie; S. L. Delp, “Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities”, J. Biomech., vol. 81, pp. 1–11, Nov. 2018. https://doi.org/10.1016/j.jbiomech.2018.09.009
dc.relation/*ref*/R. Bartlett, Introduction to Sports Biomechanics. Routledge, 3rd Edition, Routledge, 2014. https://doi.org/10.4324/9781315889504
dc.relation/*ref*/T. W. Lu; C. F. Chang, “Biomechanics of human movement and its clinical applications”, Kaohsiung J. Med. Sci., vol. 28, no. 2S, pp. S13–S25, Feb. 2012. https://doi.org/10.1016/j.kjms.2011.08.004
dc.relation/*ref*/H. M. Ericksen; A. C. Thomas; P. A. Gribble; C. Armstrong; M. Rice; B. Pietrosimone, “Jump-landing biomechanics following a 4-week real-time feedback intervention and retention”, Clin. Biomech., vol. 32, pp. 85–91, Feb. 2016. https://doi.org/10.1016/j.clinbiomech.2016.01.005
dc.relation/*ref*/E. K. Chadwick; D. Blana; A. J. van den Bogert; R. F. Kirsch, “A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements”, IEEE Trans. Biomed. Eng., vol. 56, no. 4, pp. 941–948, Apr. 2009. https://doi.org/10.1109/TBME.2008.2005946
dc.relation/*ref*/B. J. Schoenfeld, “Squatting kinematics and kinetis and their application to exercise performance”, J. Strength Cond. Res., vol. 24, no. 12, pp. 3497–3506, 2010. https://doi.org/10.1519/JSC.0b013e3181bac2d7
dc.relation/*ref*/J. K. Aggarwal; M. S. Ryoo, “Human activity analysis: A review”, ACM Comput. Surv., vol. 43, no. 3, pp. 16-43, Apr. 2011. https://doi.org/10.1145/1922649.1922653
dc.relation/*ref*/S. Almosnino; D. Kingston; R. B. Graham, “Three-dimensional knee joint moments during performance of the bodyweight Squat: Effects of stance width and foot rotation”, J. Appl. Biomech., vol. 29, no. 1, pp. 33–43, Feb. 2013. https://doi.org/10.1123/jab.29.1.33
dc.relation/*ref*/P. H. Marchetti et al., “Muscle Activation Differs between Three Different Knee Joint-Angle Positions during a Maximal Isometric Back Squat Exercise”, J. Sports Med., vol. 2016, Jul. 2016. https://doi.org/10.1155/2016/3846123
dc.relation/*ref*/L. V. Slater; J. M. Hart, “Muscle Activation Patterns during Different Squat Techniques”, J. Strength Cond. Res., vol. 31, no. 3, pp. 667–676, Mar. 2017. https://doi.org/10.1519/JSC.0000000000001323
dc.relation/*ref*/D. J. Glassbrook; E. R. Helms; S. R. Brown; A. G. Storey, “A Review of the Biomechanical Differences Between the High-Bar and Low-Bar Back-Squat”, J. Strength Cond. Res., vol. 31, no. 9, pp. 2618–2634, Sep. 2017. https://doi.org/10.1519/JSC.0000000000002007
dc.relation/*ref*/S. Howarth; J. P. Callaghan, “Quantitative assessment of the accuracy for three interpolation techniques in kinematic analysis of human movement”, Comput. Methods Biomech. Biomed. Engin., vol. 13, no. 6, pp. 847–855, Dec. 2010. https://doi.org/10.1080/10255841003664701
dc.relation/*ref*/Ø. Gløersen; P. Federolf, “Predicting Missing Marker Trajectories in Human Motion Data Using Marker Intercorrelations”, PLOS ONE, vol. 11, no. 3, p. e0152616, Mar. 2016. https://doi.org/10.1371/journal.pone.0152616
dc.relation/*ref*/R. Bartlett, “Artificial Intelligence in sports biomechanics: New dawn or false hope?”, J. Sport. Sci. Med., vol. 5, no. 4, pp. 474–479, Dec. 2006. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861744/
dc.relation/*ref*/K. Kipp; M. Giordanelli; C. Geiser, “Predicting net joint moments during a weightlifting exercise with a neural network model”, J. Biomech., vol. 74, pp. 225–229, Jun. 2018. https://doi.org/10.1016/j.jbiomech.2018.04.021
dc.relation/*ref*/A. Gholipour; N. Arjmand, “Artificial neural networks to predict 3D spinal posture in reaching and lifting activities; Applications in biomechanical models”, J. Biomech., vol. 49, no. 13, pp. 2946–2952, Sep. 2016. https://doi.org/10.1016/j.jbiomech.2016.07.008
dc.relation/*ref*/N. Shahid; T. Rappon; W. Berta, “Applications of artificial neural networks in health care organizational decision-making: A scoping review”, PLoS One, vol. 14, no. 2, p. e0212356, Feb. 2019. https://doi.org/10.1371/journal.pone.0212356
dc.relation/*ref*/A. R. Zangene; A. Abbasi, “Continuous Estimation of Knee Joint Angle during Squat from sEMG using Artificial Neural Networks”, 27th Natl. 5th Int. Iran. Conf. Biomed. Eng. ICBME 2020, no. Nov. 2020, pp. 75–78, Tehran. https://doi.org/10.1109/ICBME51989.2020.9319429
dc.relation/*ref*/D. S. Komaris et al., “Predicting Three-Dimensional Ground Reaction Forces in Running by Using Artificial Neural Networks and Lower Body Kinematics”, IEEE Access, vol. 7, pp. 156779–156786, Oct. 2019. https://doi.org/10.1109/ACCESS.2019.2949699
dc.relation/*ref*/V. Bazarevsky; I. Grishchenko; K. Raveendran; T. Zhu, F. Zhang; M. Grundmann, “BlazePose: On-device Real-time Body Pose tracking”, Jun. 2020. https://arxiv.org/abs/2006.10204
dc.relation/*ref*/C. Blanco-Diaz; C. D. Guerrero-Mendez; M. E. Duarte-González; S. Jaramillo-Isaza, “Estimation of Limbs Angles Amplitudes During the Use of the Five Minute Shaper Device Using Artificial Neural Networks”, CCIS series, pp. 213-224, Sep. 2021. https://doi.org/10.1007/978-3-030-86702-7_19
dc.relation/*ref*/C. F. Blanco Diaz; A. K. Quitian González; S. J. Isaza; A. D. Orjuela-Cañón, “A Biomechanical Analysis of Free Squat Exercise Employing Self-Organizing Maps”, in 2019 IEEE ColCACI, Jun. 2019, pp. 1–5. https://doi.org/10.1109/ColCACI.2019.8781991
dc.relation/*ref*/V. K. Ojha; A. Abraham; V. Snášel, “Metaheuristic design of feedforward neural networks: A review of two decades of research”, Eng. Appl. Artif. Intell., vol. 60, pp. 97–116, Apr. 2017. https://doi.org/10.1016/j.engappai.2017.01.013
dc.relation/*ref*/R. K. Fukuchi; B. M. Eskofier; M. Duarte; R. Ferber, “Support vector machines for detecting age-related changes in running kinematics”, J. Biomech., vol. 44, no. 3, pp. 540–542, Feb. 2011. https://doi.org/10.1016/j.jbiomech.2010.09.031
dc.relation/*ref*/F. O. López-Pabón; T. Arias-Vergara; J. R. Orozco-Arroyave, “Cepstral Analysis and Hilbert-Huang Transform for Automatic Detection of Parkinson’s Disease”, TecnoLógicas, vol. 23, no. 47, pp. 93–108, Jan. 2020. https://doi.org/10.22430/22565337.1401
dc.relation/*ref*/C. F. Blanco-Díaz; A. K. Quitian-González, “Análisis biomecánico del ejercicio sentadilla libre en sujetos sin acondicionamiento físico”, Rev. Ontare, vol. 6, Dic. 2018. https://doi.org/10.21158/23823399.v6.n0.2018.2423
dc.relation/*ref*/R. Baker, “ISB recommendation on definition of joint coordinate systems for the reporting of human joint motion—part I: ankle, hip and spine”, J. Biomech., vol. 36, no. 2, pp. 300–302, Feb. 2003. https://doi.org/10.1016/s0021-9290(02)00336-6
dc.relation/*ref*/P. S. Glazier; G. P. Paradisis; S-M. Cooper, “Anthropometric and kinematic influences on release speed in men’s fast-medium bowling”, J. Sports Sci., vol. 18, no. 12, pp. 1013–1021, Jan. 2000. https://doi.org/10.1080/026404100446810
dc.relation/*ref*/R. Contini; R. J. Drillis; M. Bluestein, “Determination of Body Segment Parameters”, Hum. Factors J. Hum. Factors Ergon. Soc., vol. 5, no. 5, pp. 493–504, Oct. 1963. https://doi.org/10.1177/001872086300500508
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.sourceTecnoLógicas; Vol. 25 No. 53 (2022); e2164en-US
dc.sourceTecnoLógicas; Vol. 25 Núm. 53 (2022); e2164es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectArtificial Neural Networksen-US
dc.subjectBiomechanical analysisen-US
dc.subjectSquat analysisen-US
dc.subjectComputational modeling in biomechanicsen-US
dc.subjectLower limb angle amplitudesen-US
dc.subjectRedes Neuronales Artificiales (RNA)es-ES
dc.subjectanálisis biomecánicoes-ES
dc.subjectanálisis de squates-ES
dc.subjectmodelado computacional en biomecánicaes-ES
dc.subjectamplitud angular de miembros inferioreses-ES
dc.titleImplementation of computational methods to estimate lower limb angle amplitudes during squaten-US
dc.titleImplementación de métodos computacionales para estimar las amplitudes angulares de los miembros inferiores durante el squates-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
revistatecnologicas_2164-MPUB-VF.pdf
Tamaño:
1.11 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
ojsitm_344270031003.epub
Tamaño:
821 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
ojsitm_344270031003.xml
Tamaño:
116.61 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2333.html
Tamaño:
165.04 KB
Formato:
Hypertext Markup Language