Analysis of Precipitation and Evaporation in the Colombian Orinoco According to the Regional Climate Models of the CORDEX-CORE Experiment

dc.creatorFlorian-Vergara, Carolina
dc.creatorSalas, Hernán D.
dc.creatorBuiles-Jaramillo, Alejandro
dc.date2021-12-17
dc.date.accessioned2025-10-01T23:52:45Z
dc.descriptionWe evaluate the capacity of the Regional Climate Models, included in the regional scale reduction experiment (CORDEX-CORE), to represent the monthly precipitation and evaporation in a watershed of the Colombian Orinoco region. In addition, we use precipitation and evaporation data from sources such as Climate Hazards Center InfraRed Precipitation with Station data, ERA5 atmospheric reanalysis, Global Precipitation Climatology Center and Global Land Evaporation Amsterdam Model. The comparisons between the assemblies of the RCMs and the observations were done using graphical and quantitative methods, among them: box plots, percentages of bias, Nash-Sutcliffe efficiency, among others. Our results allow concluding that the average precipitation values are adequately represented, in terms of their temporality and magnitude, by the assembly of the RegCM model while the average values of total evaporation are better represented by the assembly of the REMO model in terms of temporality, but not in its magnitude. Furthermore, the long-term flow estimation shows that the total evaporation values provided by the RCMs allow an adequate estimation of the long-term average flow, but not the adequate estimation of the annual flow cycle. This work is a pioneer in the evaluation of the monthly precipitation and evaporation data provided by CORDEX-CORE in the Colombian Orinoco, sets precedents for the incorporation of regional models data for hydrological purposes in poorly instrumented areas of the country, and is the first step towards the evaluation of regional climate change scenarios.en-US
dc.descriptionCon el fin de representar la precipitación y evaporación total mensual en una cuenca hidrográfica del Orinoco colombiano, este trabajo evaluó la capacidad de los modelos climáticos regionales incluidos en el Experimento regional coordinado de reducción de escala (CORDEX-CORE). Para ello, complementariamente, se incluyeron datos de precipitación y evaporación total de fuentes como Climate Hazards Center InfraRed Precipitation with Station data (CHIRPS), el reanálisis atmosférico (ERA5), Global Precipitation Climatology Center (GPCC) y Global Land Evaporation Amsterdam Model (GLEAM). Las comparaciones entre los ensambles de los modelos y las observaciones se hicieron utilizando métodos gráficos y métodos cuantitativos, entre ellos: diagramas de cajas, porcentajes de sesgo, eficiencia de Nash-Sutcliffe, entre otros. Los resultados evidencian que los valores promedio de precipitación están adecuadamente representados, en términos de su temporalidad y magnitud, por el ensamble del modelo RegCM, mientras que los valores promedio de evaporación total están mejor representados por el ensamble del modelo REMO en términos de la temporalidad, más no en su magnitud. Por otra parte, las estimaciones de caudal de largo plazo evidencian que los valores de evaporación total proporcionados por los modelos permiten una adecuada estimación del caudal promedio de largo plazo, pero no la adecuada estimación del ciclo anual de caudales. Este trabajo es pionero en la evaluación de los datos de precipitación y evaporación total mensual suministrados por CORDEX-CORE en el Orinoco colombiano, sienta precedentes para la incorporación de datos de modelos regionales para fines hidrológicos en zonas poco instrumentadas del país, y es el primer paso hacia la evaluación de escenarios regionalizados de cambio climático.  es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2144
dc.identifier10.22430/22565337.2144
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7806
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2144/2236
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2144/2237
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2144/2238
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2144/2259
dc.relation/*ref*/S. Riveros-Angarita, “La Orinoquia Colombiana,” Soc. Geogr. Colomb., vol. 36, no. 118, p. 9, 2010. https://www.sogeocol.edu.co/documentos/la_orinoquia_col.pdf
dc.relation/*ref*/V. Urrea; A. Ochoa; O. Mesa, “Seasonality of Rainfall in Colombia,” Water Resour. Res., vol. 55, no. 5, pp. 4149–4162, May 2019. https://doi.org/10.1029/2018WR023316
dc.relation/*ref*/G. Berry; M. J. Reeder, “Objective identification of the intertropical convergence Zone: and trends from the ERA-Interim,” J. Clim., vol. 27, no. 5, pp. 1894–1909, 2014. https://doi.org/10.1175/JCLI-D-13-00339.1
dc.relation/*ref*/P. A. Arias; J. A. Martínez; J. D. Mejía; M. J. Pazos; J. C. Espinoza; S. Wongchuig-Correa, “Changes in Normalized Difference Vegetation Index in the Orinoco and Amazon River Basins: Links to Tropical Atlantic Surface Temperatures,” J. Clim., vol. 33, no. 19, pp. 8537–8559, 2020. https://doi.org/10.1175/JCLI-D-19-0696.1
dc.relation/*ref*/G. Jiménez-Sánchez; P. M. Markowski; V. Jewtoukoff; G. S. Young; D. J. Stensrud, “The Orinoco Low-Level Jet: An Investigation of Its Characteristics and Evolution Using the WRF Model,” Journal of Geophysical Research: Atmospheres, vol. 124, no. 20. pp. 10696–10711, 2019. https://doi.org/10.1029/2019JD030934
dc.relation/*ref*/G. Jiménez‐Sánchez; P. M. Markowski; G. S. Young; D. J. Stensrud, “The Orinoco Low‐Level Jet: An Investigation of its Mechanisms of Formation Using the WRF Model,” J. Geophys. Res. Atmos., vol. 125, no. 13, pp. 1–23, 2020. https://doi.org/10.1029/2020jd032810
dc.relation/*ref*/F. Giorgi; C. Jones; G. Asrar, “Addressing climate information needs at the regional level: the CORDEX framework,” … Organ. Bull., no. November 2008, 2009. http://www.euro-cordex.net/uploads/media/Download_01.pdf
dc.relation/*ref*/B. E. Oviedo Torres; G. Aristizábal León, “Guía de procedimiento para la generación de escenarios de cambio climático regional y local a partir de los modelos globales,” Inst. Hidrol. , Meterología y Estud. Ambient., p. 89, 2010. http://www.ideam.gov.co/documents/21021/21138/Guía+Escenarios+Cambio+Climatico.pdf/72eae24f-04ea-4ce2-9a4b-e551559c48fc
dc.relation/*ref*/A. Rodríguez, “Evaluación de los modelos globales del clima utilizados para la generación de escenarios de cambio climático con el clima presente en Colombia.,” Ideam-Meteo, 2010
dc.relation/*ref*/P. Acevedo, “Comparación de series de precipitación con los GCM CCSM3, ECHAM5, HADGEM1 y MIROC 3.2 HIRES, para el siglo XX en Colombia,” 2008
dc.relation/*ref*/M. Rummukainen, “Added value in regional climate modeling,” Wiley Interdiscip. Rev. Clim. Chang., vol. 7, no. 1, pp. 145–159, 2016. https://doi.org/10.1002/wcc.378
dc.relation/*ref*/K. E. Taylor; R. J. Stouffer; G. A. Meehl, “An overview of CMIP5 and the experiment design,” Bull. Am. Meteorol. Soc., vol. 93, no. 4, pp. 485–498, 2012. https://doi.org/10.1175/BAMS-D-11-00094.1
dc.relation/*ref*/F. Giorgi, “Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going next?,” J. Geophys. Res. Atmos., vol. 124, no. 11, pp. 5696–5723, 2019. https://doi.org/10.1029/2018JD030094
dc.relation/*ref*/T. Ambrizzi; M. S. Reboita; R. P. da Rocha; M. Llopart, “The state of the art and fundamental aspects of regional climate modeling in South America,” Ann. N. Y. Acad. Sci., vol. 1436, no. 1, pp. 98–120, 2019. https://doi.org/10.1111/nyas.13932
dc.relation/*ref*/A. V. Karmalkar; R. S. Bradley; H. F. Diaz, “Climate change in Central America and Mexico: Regional climate model validation and climate change projections,” Clim. Dyn., vol. 37, no. 3, pp. 605–629, 2011. https://doi.org/10.1007/s00382-011-1099-9
dc.relation/*ref*/CORDEX, “CORDEX CORE Simulation Framework – Cordex,” 2020. https://cordex.org/experiment-guidelines/cordex-core/cordex-core-simulation-framework/
dc.relation/*ref*/D. Jacob et al., “A comprehensive model inter-comparison study investigating the water budget during the BALTEX-PIDCAP period,” Meteorol. Atmos. Phys., vol. 77, no. 1–4, pp. 19–43, Sep. 2001. https://doi.org/10.1007/s007030170015
dc.relation/*ref*/F. Giorgi et al., “RegCM4: Model description and preliminary tests over multiple CORDEX domains,” Clim. Res., vol. 52, no. 1, pp. 7–29, 2012. https://doi.org/10.3354/cr01018
dc.relation/*ref*/M. Ashfaq et al., “Robust late twenty-first century shift in the regional monsoons in RegCM-CORDEX simulations,” Clim. Dyn., vol. 57, no. 5–6, pp. 1463–1488, Sep. 2021. https://doi.org/10.1007/s00382-020-05306-2
dc.relation/*ref*/M. Llopart et al., “Assessing changes in the atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains,” Clim. Dyn., vol. 57, no. 5–6, pp. 1615–1628, Sep. 2021. https://doi.org/10.1007/s00382-020-05539-1
dc.relation/*ref*/M. Falco; A. F. Carril; L. Z. X. Li; C. Cabrelli; C. G. Menéndez, “The potential added value of Regional Climate Models in South America using a multiresolution approach,” Clim. Dyn., vol. 54, no. 3–4, pp. 1553–1569, Feb. 2020. https://doi.org/10.1007/s00382-019-05073-9
dc.relation/*ref*/A. Builes-Jaramillo;V. Pántano, “Comparison of spatial and temporal performance of two Regional Climate Models in the Amazon and La Plata river basins,” Atmos. Res., vol. 250, no. November 2020, Mar. 2021. https://doi.org/10.1016/j.atmosres.2020.105413
dc.relation/*ref*/M. G. R. Fahad; A. K. M. Saiful Islam; R. Nazari; M. Alfi Hasan; G. M. Tarekul Islam; S. K. Bala, “Regional changes of precipitation and temperature over Bangladesh using bias-corrected multi-model ensemble projections considering high-emission pathways,” Int. J. Climatol., vol. 38, no. 4, pp. 1634–1648, Mar. 2018. https://doi.org/10.1002/joc.5284
dc.relation/*ref*/S. A. Solman; J. Blázquez, “Multiscale precipitation variability over South America: Analysis of the added value of CORDEX RCM simulations,” Clim. Dyn., vol. 53, no. 3–4, pp. 1547–1565, Aug. 2019. https://doi.org/10.1007/s00382-019-04689-1
dc.relation/*ref*/G. Pang; X. Wang; D. Chen; M. Yang; L. Liu, “Evaluation of a climate simulation over the Yellow River Basin based on a regional climate model (REMO) within the CORDEX,” Atmos. Res., vol. 254, p. 105522, Jun. 2021. https://doi.org/10.1016/j.atmosres.2021.105522
dc.relation/*ref*/F. Giorgi; E. Coppola; C. Teichmann; D. Jacob, “Editorial for the CORDEX-CORE Experiment I Special Issue,” Clim. Dyn., vol. 57, no. 5–6, pp. 1265–1268, Sep. 2021. https://doi.org/10.1007/s00382-021-05902-w
dc.relation/*ref*/M. Bentsen et al., “The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate,” Geosci. Model Dev., vol. 6, no. 3, pp. 687–720, 2013. https://doi.org/10.5194/gmd-6-687-2013
dc.relation/*ref*/M. A. Giorgetta et al., “Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5,” J. Adv. Model. Earth Syst., vol. 5, no. 3, pp. 572–597, 2013. https://doi.org/10.1002/jame.20038
dc.relation/*ref*/G. M. Martin et al., “The HadGEM2 family of Met Office Unified Model climate configurations,” Geosci. Model Dev., vol. 4, no. 3, pp. 723–757, 2011.https://doi.org/10.5194/gmd-4-723-2011
dc.relation/*ref*/A. Allam; R. Moussa; W. Najem; C. Bocquillon, “Specific climate classification for Mediterranean hydrology and future evolution under Med-CORDEX regional climate model scenarios,” Hydrol. Earth Syst. Sci., vol. 24, no. 9, pp. 4503–4521, Sep. 2020. https://doi.org/10.5194/hess-24-4503-2020
dc.relation/*ref*/R. Laprise et al., “Challenging some tenets of Regional Climate Modelling,” Meteorol. Atmos. Phys., vol. 100, no. 1–4, pp. 3–22, Aug. 2008. https://doi.org/10.1007/s00703-008-0292-9
dc.relation/*ref*/A. Alexandru; R. de Elia; R. Laprise, “Internal variability in regional climate downscaling at the seasonal scale,” Mon. Weather Rev., vol. 135, no. 9, pp. 3221–3238, Sep. 2007. https://doi.org/10.1175/MWR3456.1
dc.relation/*ref*/C. Teutschbein; J. Seibert, “Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods,” J. Hydrol., vol. 456–457, pp. 12–29, Aug. 2012. https://doi.org/10.1016/j.jhydrol.2012.05.052
dc.relation/*ref*/F. das N. Roque da Silva; J. L. Drummond Alves; M. Cataldi, “Climate downscaling over South America for 1971–2000: application in SMAP rainfall-runoff model for Grande River Basin,” Clim. Dyn., vol. 52, no. 1–2, pp. 681–696, 2019. https://doi.org/10.1007/s00382-018-4166-7
dc.relation/*ref*/D. Rosbjerg et al., Prediction of floods in ungauged basins. 2013.
dc.relation/*ref*/M. Sivapalan, “Prediction in ungauged basins: a grand challenge for theoretical hydrology,” Hydrol. Process., vol. 17, no. 15, pp. 3163–3170, Oct. 2003. https://doi.org/10.1002/hyp.5155
dc.relation/*ref*/M. Hrachowitz et al., “A decade of Predictions in Ungauged Basins (PUB)-a review,” Hydrol. Sci. J., vol. 58, no. 6, pp. 1198–1255, Jun. 2013. https://doi.org/10.1080/02626667.2013.803183
dc.relation/*ref*/Z. H. Xie et al., “Coupled modeling of land hydrology–regional climate including human carbon emission and water exploitation,” Adv. Clim. Chang. Res., vol. 8, no. 2, pp. 68–79, Jun. 2017. https://doi.org/10.1016/j.accre.2017.05.001
dc.relation/*ref*/C. Teutschbein; J. Seibert, “Regional Climate Models for Hydrological Impact Studies at the Catchment Scale: A Review of Recent Modeling Strategies,” Geogr. Compass, vol. 4, no. 7, pp. 834–860, Jul. 2010. https://doi.org/10.1111/j.1749-8198.2010.00357.x
dc.relation/*ref*/L. P. Graham; S. Hagemann; S. Jaun; M. Beniston, “On interpreting hydrological change from regional climate models,” Clim. Change, vol. 81, no. SUPPL. 1, pp. 97–122, Mar. 2007. https://doi.org/10.1007/s10584-006-9217-0
dc.relation/*ref*/M. Velásquez Restrepo; G. Poveda Jaramillo, “Estimación del balance hídrico de la región Pacífica Colombiana,” Dyna, vol. 86, no. 208, pp. 297–306, 2019. https://doi.org/10.15446/dyna.v86n208.73587
dc.relation/*ref*/D. Mena Rentería; E. M. Espinosa; P. C. Soler; M. Cañón Ramos; F. S. Duarte; J. R. Palacios González, “Water supply failure probability under influence of climate change—Balsillas river basin case study,” Rev. Fac. Ing. Univ. Antioquia, no. 103, Oct. 2020. https://doi.org/10.17533/udea.redin.20201008
dc.relation/*ref*/D. Mena; A. Solera; L. Restrepo; M. Pimiento; M. Cañón; F. Duarte, “An analysis of unmet water demand under climate change scenarios in the Gualí River Basin, Colombia, through the implementation of Hydro-BID and WEAP hydrological modeling tools,” J. Water Clim. Chang., pp. 1–12, Feb. 2021. https://doi.org/10.2166/wcc.2019.118
dc.relation/*ref*/J. P. Pietikäinen et al., “The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes,” Geosci. Model Dev., vol. 11, no. 4, pp. 1321–1342, Aug. 2018. https://doi.org/10.5194/gmd-11-1321-2018
dc.relation/*ref*/J. H. Jungclaus et al., “Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model,” J. Adv. Model. Earth Syst., vol. 5, no. 2, pp. 422–446, Jun. 2013. https://doi.org/10.1002/jame.20023
dc.relation/*ref*/D. Machiwal; M. K. Jha, “Time series analysis of hydrologic data for water resources planning and management: a review,” J. Hydrol. Hydromechanics, vol. 54, no. 3, p. 237, 2006. http://www.uh.sav.sk/Portals/16/vc_articles/2006_54_3_Machiwal_237.pdf
dc.relation/*ref*/A. Aieb; K. Madani; M. Scarpa; B. Bonaccorso; K. Lefsih, “A new approach for processing climate missing databases applied to daily rainfall data in Soummam watershed, Algeria,” Heliyon, vol. 5, no. 2, p. e01247, Feb. 2019. https://doi.org/10.1016/j.heliyon.2019.e01247
dc.relation/*ref*/S. M. Shaharudin et al., “Imputation methods for addressing missing data of monthly rainfall in Yogyakarta, Indonesia,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 1.4, pp. 646–651, Sep. 2020. https://doi.org/10.30534/ijatcse/2020/9091.42020
dc.relation/*ref*/C. Funk et al., “The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes,” Sci. Data, vol. 2, pp. 1–21, Dec. 2015. https://doi.org/10.1038/sdata.2015.66
dc.relation/*ref*/H. Hersbach et al., “The ERA5 global reanalysis,” Q. J. R. Meteorol. Soc., vol. 146, no. 730, pp. 1999–2049, Jul. 2020. https://doi.org/10.1002/qj.3803
dc.relation/*ref*/U. Schneider; A. Becker; P. Finger; A. Meyer-Christoffer; M. Ziese; B. Rudolf, “GPCC’s new land s urface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle,” Theor. Appl. Climatol., vol. 115, no. 1–2, pp. 15–40, Mar. 2014. https://doi.org/10.1007/s00704-013-0860-x
dc.relation/*ref*/B. Martens et al., “GLEAM v3: Satellite-based land evaporation and root-zone soil moisture,” Geosci. Model Dev., vol. 10, no. 5, pp. 1903–1925, 2017. https://doi.org/10.5194/gmd-10-1903-2017
dc.relation/*ref*/R. Hagedorn; F. J. Doblas-Reyes; T. N. Palmer, “The rationale behind the success of multi-model ensembles in seasonal forecasting - I. Basic concept,” Tellus, Series A: Dynamic Meteorology and Oceanography, vol. 57, no. 3. pp. 219–233, 2005. https://doi.org/10.1111/j.1600-0870.2005.00103.x
dc.relation/*ref*/A. C. Palladino, “Gráfico de caja,” Atención primaria salud, Epidemiol. e Inform. II, pp. 7–10, 2011. https://med.unne.edu.ar/sitio/multimedia/imagenes/ckfinder/files/files/aps/GR%C3%81FICO%20DE%20CAJA.pdf
dc.relation/*ref*/D. N. Moriasi; J. G. Arnold; M. W. Van Liew; R. L. Bingner; R. D. Harmel; T. L. Veith, “Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations,” Trans. ASABE, vol. 50, no. 3, pp. 885–900, 2007. https://doi.org/10.13031/2013.23153
dc.relation/*ref*/J. Peixoto; A. Oort, Physics of Climate. AIP-Press, 1993.
dc.relation/*ref*/WRCP, “CORDEX CORE Simulation Framework,” 2018. https://cordex.org/experiment-guidelines/cordex-core/cordex-core-simulation-framework/
dc.relation/*ref*/A. Builes‐Jaramillo; G. Poveda, “Conjoint Analysis of Surface and Atmospheric Water Balances in the Andes‐Amazon System,” Water Resour. Res., vol. 54, no. 5, pp. 3472–3489, May 2018. https://doi.org/10.1029/2017WR021338
dc.relation/*ref*/L. Zhang; N. Potter; K. Hickel; Y. Zhang; Q. Shao, “Water balance modeling over variable time scales based on the Budyko framework – Model development and testing,” J. Hydrol., vol. 360, no. 1–4, pp. 117–131, Oct. 2008. https://doi.org/10.1016/j.jhydrol.2008.07.021
dc.relation/*ref*/J. A. Marengo, “Characteristics and spatio-temporal variability of the Amazon River Basin Water Budget,” Clim. Dyn., vol. 24, no. 1, pp. 11–22, Jan. 2005. https://doi.org/10.1007/s00382-004-0461-6
dc.relation/*ref*/M. Llopart; M. Simões Reboita; R. Porfírio da Rocha, “Assessment of multi-model climate projections of water resources over South America CORDEX domain,” Clim. Dyn., vol. 54, no. 1–2, pp. 99–116, 2020. https://doi.org/10.1007/s00382-019-04990-z
dc.relation/*ref*/A. M. Foley, “Uncertainty in regional climate modelling: A review,” Prog. Phys. Geogr. Earth Environ., vol. 34, no. 5, pp. 647–670, Oct. 2010. https://doi.org/10.1177/0309133310375654
dc.relation/*ref*/E. Hawkins; R. Sutton, “The Potential to Narrow Uncertainty in Regional Climate Predictions,” Bull. Am. Meteorol. Soc., vol. 90, no. 8, pp. 1095–1108, Aug. 2009. https://doi.org/10.1175/2009BAMS2607.1
dc.relation/*ref*/J. Gutiérrez; M. Pons, “Modelización numérica del cambio climático: bases científicas, incertidumbres y proyecciones para la Península Ibérica,” Cuaternario y Geomorfol., vol. 20, no. 3, pp. 15–28, 2006. https://dialnet.unirioja.es/servlet/articulo?codigo=2200478
dc.relation/*ref*/Y. Shi; M. Yu; A. Erfanian; G. Wang, “Modeling the Dynamic Vegetation–Climate System over China Using a Coupled Regional Model,” J. Clim., vol. 31, no. 15, pp. 6027–6049, Aug. 2018. https://doi.org/10.1175/JCLI-D-17-0191.1
dc.relation/*ref*/A. M. Bryan; A. L. Steiner; D. J. Posselt, “Regional modeling of surface-atmosphere interactions and their impact on Great Lakes hydroclimate,” J. Geophys. Res. Atmos., vol. 120, no. 3, pp. 1044–1064, Feb. 2015. https://doi.org/10.1002/2014JD022316
dc.relation/*ref*/J. C. A. Baker et al., “Evapotranspiration in the Amazon: spatial patterns, seasonality, and recent trends in observations, reanalysis, and climate models,” Hydrol. Earth Syst. Sci., vol. 25, no. 4, pp. 2279–2300, Apr. 2021. https://doi.org/10.5194/hess-25-2279-2021
dc.relation/*ref*/J. Cuxart; A. Verhoef; T. Marthews; J. Evans, “Current Challenges in Evapotranspiration Determination, GEWEX News,” 2021. https://hal.archives-ouvertes.fr/hal-02901795
dc.relation/*ref*/A. A. Sörensson; R. C. Ruscica, “Intercomparison and Uncertainty Assessment of Nine Evapotranspiration Estimates Over South America,” Water Resour. Res., vol. 54, no. 4, pp. 2891–2908, Apr. 2018. https://doi.org/10.1002/2017WR021682
dc.relation/*ref*/P. C. D. Milly; K. A. Dunne, “On the Hydrologic Adjustment of Climate-Model Projections: The Potential Pitfall of Potential Evapotranspiration,” Earth Interact., vol. 15, no. 1, pp. 1–14, Jan. 2011. https://doi.org/10.1175/2010EI363.1
dc.relation/*ref*/A. F. Carril et al., “Performance of a multi-RCM ensemble for South Eastern South America,” Clim. Dyn., vol. 39, no. 12, pp. 2747–2768, Dec. 2012. https://doi.org/10.1007/s00382-012-1573-z
dc.relation/*ref*/M. Llopart; R. P. da Rocha; M. Reboita; S. Cuadra, “Sensitivity of simulated South America climate to the land surface schemes in RegCM4,” Clim. Dyn., vol. 49, no. 11–12, pp. 3975–3987, Feb. 2017. https://doi.org/10.1007/s00382-017-3557-5
dc.rightsDerechos de autor 2021 TecnoLógicases-ES
dc.sourceTecnoLógicas; Vol. 24 No. 52 (2021); e2144en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 52 (2021); e2144es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectMonthly precipitationen-US
dc.subjectMonthly evaporationen-US
dc.subjectWater Balanceen-US
dc.subjectModel Comparisonen-US
dc.subjectRegional Climate Modelsen-US
dc.subjectPerformance assessmenten-US
dc.subjectPrecipitación mensuales-ES
dc.subjectevaporación mensuales-ES
dc.subjectbalance hídricoes-ES
dc.subjectcomparación de modeloses-ES
dc.subjectmodelos climáticos regionaleses-ES
dc.subjectevaluación de desempeñoes-ES
dc.titleAnalysis of Precipitation and Evaporation in the Colombian Orinoco According to the Regional Climate Models of the CORDEX-CORE Experimenten-US
dc.titleAnálisis de la precipitación y la evaporación en el Orinoco colombiano según los modelos climáticos regionales del experimento CORDEX-COREes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos