Machine Learning and Soft Sensors of Electronic Nose and Tongue Type for Cancer Detection
dc.creator | García-García, Laura M. | |
dc.creator | Vallejo, Marcela | |
dc.creator | Delgado-Trejos, Edilson | |
dc.date | 2025-08-22 | |
dc.date.accessioned | 2025-10-01T23:53:16Z | |
dc.description | Cancer has high incidence and mortality rates worldwide and early diagnosis significantly improves survival outcomes. Consequently, there is a growing interest in non-invasive and cost-effective diagnostic tools, such as soft sensors for the analysis of Volatile Organic Compounds (VOCs), which can serve as biomarkers for the disease. This article aimed to present a comprehensive review on the use of electronic noses and tongues as soft sensors for cancer detection, along with data processing through machine learning algorithms. A qualitative methodology was employed, based on a literature review of databases including ScienceDirect, IEEEXplore, Sage Journals, and Scopus, resulting in the selection of 54 relevant articles published between 2010 and 2024. The articles were selected using a process aligned with the PRISMA methodology. The findings highlight the application of soft sensors for the detection of lungs, prostate, bladder, breast, ovarian, colorectal, gastric cancers, and oral cavity conditions, using samples such as urine, exhaled breath, saliva, and blood. The discussion addresses comparative analyses of representation and decision-making techniques, as well as emerging trends, challenges, and research opportunities in the field. The study concludes that integrating soft metrology with soft sensors and machine learning enables the accurate measurement of cancer biomarkers from biological substances, achieving detection accuracies of approximately 90%. However, significant research challenges and opportunities related to system architecture optimization remain to enhance reliability. | en-US |
dc.description | El cáncer tiene alta incidencia y mortalidad a nivel mundial, y un diagnóstico temprano mejora significativamente la supervivencia. Por ello, se buscan herramientas no invasivas y económicas, como los soft sensores, para analizar Compuestos Orgánicos Volátiles (COV) que pueden actuar como biomarcadores de la enfermedad. Este artículo tuvo como objetivo revisar el estado del arte sobre el uso de narices y lenguas electrónicas como soft sensores para la detección de cáncer, junto con el procesamiento de datos mediante máquinas de aprendizaje. Se empleó una metodología cualitativa basada en la revisión de literatura científica publicada en bases de datos como ScienceDirect, IEEEXplore, Sage Journals y Scopus. Se seleccionaron 54 artículos relevantes, a partir de un proceso basado en la metodología PRISMA, publicados entre 2010 y 2024. Los resultados revelaron el uso de soft sensores para detectar cáncer de pulmón, próstata, vejiga, mama, ovario, colon, estómago y cavidad bucal, utilizando muestras como orina, aliento, saliva y sangre. La discusión incluyó comparaciones entre técnicas de análisis y decisiones, además se destacan tendencias, desafíos y oportunidades de investigación en el área. Se concluye que combinar la soft metrología, los soft sensores y el aprendizaje automático permite detectar biomarcadores del cáncer con una precisión alrededor del 90 %. No obstante, aún existen retos y oportunidades de investigación para optimizar las arquitecturas y lograr sistemas más confiables. | es-ES |
dc.format | application/pdf | |
dc.format | text/xml | |
dc.format | application/zip | |
dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3296 | |
dc.identifier | 10.22430/22565337.3296 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12622/7935 | |
dc.language | spa | |
dc.publisher | Instituto Tecnológico Metropolitano (ITM) | es-ES |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3296/3720 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3296/3786 | |
dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3296/3787 | |
dc.relation | /*ref*/Organización Mundial de la Salud (OMS), “Cáncer,” who.int. Accessed: May. 08. 2023. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/cancer | |
dc.relation | /*ref*/H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA Cancer J. Clin., vol. 71, no. 3, pp. 209–249, May. 2021. https://doi.org/10.3322/caac.21660 | |
dc.relation | /*ref*/N. Rodríguez Hernández, T. Romero Pérez, M. L. López Prieto, C. A. Cobas Santos, and Y. Martínez Carmona, “Nivel de conocimiento sobre exámenes diagnósticos para la detección precoz del cáncer colorrectal,” Rev. Cien. Méd. Pinar del Río, vol 23, no. 2, pp. 286–294, Mar. 2019. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-31942019000200286 | |
dc.relation | /*ref*/H. Amal et al., “Breath testing as potential colorectal cancer screening tool,” Int. J. Cancer, vol. 138, no. 1, pp. 229–236, Jan. 2016. https://doi.org/10.1002/ijc.29701 | |
dc.relation | /*ref*/S. Chandrapalan, and R. P. Arasaradnam, “Urine as a biological modality for colorectal cancer detection,” Expert Rev. Mol. Diagn., vol. 20, no. 5, pp. 489–496, Mar. 2020. https://doi.org/10.1080/14737159.2020.1738928 | |
dc.relation | /*ref*/M. Vallejo, N. Bahamón, L. Rossi, and E. Delgado-Trejos, “Handbook of Metrology and Applications,” in Soft Metrology: Concept and Challenges from Uncertainty Estimation, D. K. Aswal, S. Yadav, T. Takatsuji, P. Rachakonda, and H. Kumar, Eds., Singapore: Springer, 2023, pp. 1–31. https://doi.org/10.1007/978-981-19-1550-5_67-1 | |
dc.relation | /*ref*/Y. Li, X. Wei, Y. Zhou, J. Wang, and R. You, “Research progress of electronic nose technology in exhaled breath disease analysis,” Microsyst. Nanoeng., vol. 9, no. 1, p. 129, Oct. 2023. https://doi.org/10.1038/s41378-023-00594-0 | |
dc.relation | /*ref*/L. Pascual et al., “Detection of prostate cancer using a voltammetric electronic tongue,” Analyst, vol. 141, no. 15, pp. 4562–4567, Aug. 2016. https://doi.org/10.1039/c6an01044j | |
dc.relation | /*ref*/M. Alamin Talukder, M. Manowarul Islam, M. Ashraf Uddin, A. Akhter, K. Fida Hasan, and M. Ali Moni, “Machine learning-based lung and colon cancer detection using deep feature extraction and ensemble learning,” Expert Syst. Appl., vol. 205, p. 117695, Nov. 2022. https://doi.org/10.1016/j.eswa.2022.117695 | |
dc.relation | /*ref*/D. C. Braz et al., “Using machine learning and an electronic tongue for discriminating saliva samples from oral cavity cancer patients and healthy individuals,” Talanta, vol. 243, p. 123327, Jun. 2022. https://doi.org/10.1016/j.talanta.2022.123327 | |
dc.relation | /*ref*/J. Fitzgerald, and H. Fenniri, “Cutting edge methods for non-invasive disease diagnosis using e-tongue and e-nose devices,” Biosensors, vol. 7, no. 4, p. 59, Dec. 2017. https://doi.org/10.3390/bios7040059 | |
dc.relation | /*ref*/Z. Zhang et al., “Electronic nose based on metal oxide semiconductor sensors for medical diagnosis,” Progress Nat. Sci.: Mater. Int., vol. 34, no. 1, pp. 74–88, Feb. 2024. https://doi.org/10.1016/j.pnsc.2024.01.018 | |
dc.relation | /*ref*/E. G. M. Steenhuis et al., “Feasibility of volatile organic compound in breath analysis in the follow-up of colorectal cancer: A pilot study,” Eur. J. Surg. Oncol., vol. 46, no. 11, pp. 2068–2073, Nov. 2020. https://doi.org/10.1016/j.ejso.2020.07.028 | |
dc.relation | /*ref*/D. F. Altomare et al., “The use of the PEN3 e-nose in the screening of colorectal cancer and polyps,” Tech. Coloproctol., vol. 20, no. 6, pp. 405–409, Jun. 2016. https://doi.org/10.1007/s10151-016-1457-z | |
dc.relation | /*ref*/K. E. Van Keulen, M. E. Jansen, R. W. M. Schrauwen, J. J. Kolkman, and P. D. Siersema, “Volatile organic compounds in breath can serve as a non-invasive diagnostic biomarker for the detection of advanced adenomas and colorectal cancer,” Aliment. Pharmacol. Ther., vol. 51, no. 3, pp. 334–346, Feb. 2020 https://doi.org/10.1111/apt.15622 | |
dc.relation | /*ref*/R. Thriumani et al., “Cancer detection using an electronic nose: A preliminary study on detection and discrimination of cancerous cells,” in IECBES 2014, Conf. Proc. - 2014 IEEE Conf. Biomed. Engin. Sci., Kuala Lumpur, Malay, 2014, pp. 752–756. https://doi.org/10.1109/IECBES.2014.7047609 | |
dc.relation | /*ref*/K. Chen et al., “Recognizing lung cancer and stages using a self-developed electronic nose system,” Comput. Biol. Med., vol. 131, p. 104294, Apr. 2021. https://doi.org/10.1016/j.compbiomed.2021.104294 | |
dc.relation | /*ref*/J.-M. Lee et al., “A DNA-derived phage nose using machine learning and artificial neural processing for diagnosing lung cancer,” Biosens. Bioelectron., vol. 194, p. 113567, Dec. 2021. https://doi.org/10.1016/j.bios.2021.113567 | |
dc.relation | /*ref*/B. Liu et al., “Lung cancer detection via breath by electronic nose enhanced with a sparse group feature selection approach,” Sens. Actuators B Chem., vol. 339, p. 129896. Jul. 2021. https://doi.org/10.1016/j.snb.2021.129896 | |
dc.relation | /*ref*/J. Qian, F. Tian, Y. Luo, M. Lu, and A. Zhang, “A Novel Multisensor Detection System Design for Low Concentrations of Volatile Organic Compounds,” IEEE Transact. Ind. Electr., vol. 69, no. 5, pp. 5314–5324, May. 2022. https://doi.org/10.1109/TIE.2021.3080218 | |
dc.relation | /*ref*/T. Saidi et al., “Non-invasive prediction of lung cancer histological types through exhaled breath analysis by UV-irradiated electronic nose and GC/QTOF/MS,” Sens. Actuators B: Chem., vol. 311, p. 127932, May. 2020. https://doi.org/10.1016/j.snb.2020.127932 | |
dc.relation | /*ref*/M. Tirzïte, M. Bukovskis, G. Strazda, N. Jurka, and I. Taivans, “Detection of lung cancer with electronic nose and logistic regression analysis,” J. Breath Res., vol. 13, no. 1, Nov. 2019. https://doi.org/10.1088/1752-7163/aae1b8 | |
dc.relation | /*ref*/V. A. Binson, M. Subramoniam, and L. Mathew, “Detection of COPD and Lung Cancer with electronic nose using ensemble learning methods,” Clin. Chimica Acta, vol. 523, pp. 231–238, Dec. 2021. https://doi.org/10.1016/j.cca.2021.10.005 | |
dc.relation | /*ref*/R. Van de Goor, M. Van Hooren, A. M. Dingemans, B. Kremer, and K. Kross, “Training and Validating a Portable Electronic Nose for Lung Cancer Screening,” J. Thorac. Oncol., vol. 13, no. 5, pp. 676–681, May. 2018. https://doi.org/10.1016/j.jtho.2018.01.024 | |
dc.relation | /*ref*/X. Zhan, Z. Wang, M. Yang, Z. Luo, Y. Wang, and G. Li, “An electronic nose-based assistive diagnostic prototype for lung cancer detection with conformal prediction,” Measur., vol. 158, p. 107588, Jul. 2020. https://doi.org/10.1016/j.measurement.2020.107588 | |
dc.relation | /*ref*/G. Rocco et al., “A Real-World Assessment of Stage I Lung Cancer Through Electronic Nose Technology,” J. Thorac. Oncol., vol. 19, no. 9, pp. 1272–1283, Sep. 2024. https://doi.org/10.1016/j.jtho.2024.05.006 | |
dc.relation | /*ref*/A. Zompanti et al., “Sensor technology advancement enhancing exhaled breath portability: Device set up and pilot test in the longitudinal study of lung cancer,” Sens. Actuators B: Chem., vol. 423, p. 136735, Jan. 2025. https://doi.org/10.1016/j.snb.2024.136735 | |
dc.relation | /*ref*/H. Xiong et al., “Recent advances in biosensors detecting biomarkers from exhaled breath and saliva for respiratory disease diagnosis,” Biosens. Bioelectron., vol. 267, p. 116820, Jan. 2025. https://doi.org/10.1016/j.bios.2024.116820 | |
dc.relation | /*ref*/V. Chaudhary et al., “Nose-on-Chip Nanobiosensors for Early Detection of Lung Cancer Breath Biomarkers,” ACS Sens., vol. 9, no. 9, pp. 4469–4494, Sep. 2024. https://doi.org/10.1021/acssensors.4c01524 | |
dc.relation | /*ref*/V. N. E. Schuermans et al., “Pilot Study: Detection of Gastric Cancer from Exhaled Air Analyzed with an Electronic Nose in Chinese Patients,” Surg. Innov., vol. 25, no. 5, pp. 429–434, Jun. 2018. https://doi.org/10.1177/1553350618781267 | |
dc.relation | /*ref*/I. Polaka, E. Gašenko, O. Barash, H. Haick, and M. Leja, “Constructing Interpretable Classifiers to Diagnose Gastric Cancer Based on Breath Tests,” Procedia Comp. Sci., vol. 104, pp. 279–285, 2017. https://doi.org/10.1016/j.procs.2017.01.136 | |
dc.relation | /*ref*/R. Angioli et al., “Use of Sensor Array Analysis to Detect Ovarian Cancer through Breath, Urine, and Blood: A Case-Control Study,” Diagnostics, vol. 14, no. 5, p. 561, Mar. 2024. https://doi.org/10.3390/diagnostics14050561 | |
dc.relation | /*ref*/P. Bassi et al., “Improved non-invasive diagnosis of bladder cancer with an electronic nose: A large pilot study,” J. Clin. Med., vol. 10, no. 21, p. 4984, Nov. 2021. https://doi.org/10.3390/jcm10214984 | |
dc.relation | /*ref*/C. Bax, L. Capelli, F. Grizzi, S. Prudenza, and G. Taverna, “A novel approach for the non-invasive diagnosis of prostate cancer based on urine odour analysis,” in 2022 IEEE Int. Symp. Olfact. Electr. Nose (ISOEN), Aveiro, Portugal, 2022, pp. 1–4. https://doi.org/10.1109/isoen54820.2022.9789651 | |
dc.relation | /*ref*/A. Filianoti et al., “Volatilome Analysis in Prostate Cancer by Electronic Nose: A Pilot Monocentric Study,” Cancers (Basel), vol. 14, no. 12, p. 2927, Jun. 2022. https://doi.org/10.3390/cancers14122927 | |
dc.relation | /*ref*/G. Taverna et al., “Accuracy of a new electronic nose for prostate cancer diagnosis in urine samples,” Int. J. Urol., vol. 29, no. 8, pp. 890-893, Aug. 2022. https://doi.org/10.1111/iju.14912 | |
dc.relation | /*ref*/H. Heers et al., “VOC‐based detection of prostate cancer using an electronic nose and ion mobility spectrometry: A novel urine‐based approach,” Prostate, vol. 84, no. 8, pp. 756–762, Jun. 2024. https://doi.org/10.1002/pros.24692 | |
dc.relation | /*ref*/H. Tyagi, E. Daulton, A. S. Bannaga, R. P. Arasaradnam, and J. A. Covington, “Non-Invasive Detection and Staging of Colorectal Cancer Using a Portable Electronic Nose,” Sensors, vol. 21, no. 16, p. 5440, Aug. 2021. https://doi.org/10.3390/s21165440 | |
dc.relation | /*ref*/E. Westenbrink et al., “Development and application of a new electronic nose instrument for the detection of colorectal cancer,” Biosens. Bioelectron., vol. 67, pp. 733–738, May. 2015. https://doi.org/10.1016/j.bios.2014.10.044 | |
dc.relation | /*ref*/J. Monreal-Trigo et al., “New bladder cancer non-invasive surveillance method based on voltammetric electronic tongue measurement of urine,” iScience, vol. 25, no. 9, p. 104829, Sep. 2022. https://doi.org/10.1016/j.isci.2022.104829 | |
dc.relation | /*ref*/R. Belugina, E. Karpushchenko, A. Sleptsov, V. Protoshchak, A. Legin, and D. Kirsanov, “Developing non-invasive bladder cancer screening methodology through potentiometric multisensor urine analysis,” Talanta, vol. 234, p. 122696, Nov. 2021. https://doi.org/10.1016/j.talanta.2021.122696 | |
dc.relation | /*ref*/D. Lin et al., “Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis,” Opt. Express, vol. 19, no. 14, pp. 13565-13577, Jul. 2011. https://doi.org/10.1364/OE.19.013565 | |
dc.relation | /*ref*/S. Feng et al., “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron., vol. 25, no. 11, pp. 2414–2419, Jul. 2010. https://doi.org/10.1016/j.bios.2010.03.033 | |
dc.relation | /*ref*/C. M. Durán Acevedo, J. K. Carrillo Gómez, C. A. Cuastumal Vasquez, and J. Ramos, “Prostate Cancer Detection in Colombian Patients through E-Senses Devices in Exhaled Breath and Urine Samples,” Chemosen., vol. 12, no. 1, p. 11, Jan. 2024. https://doi.org/10.3390/chemosensors12010011 | |
dc.relation | /*ref*/S. Solovieva et al., “Potentiometric multisensor system as a possible simple tool for non-invasive prostate cancer diagnostics through urine analysis,” Sens. Actuators B Chem., vol. 289, pp. 42–47, Jun. 2019. https://doi.org/10.1016/j.snb.2019.03.072 | |
dc.relation | /*ref*/M. Mahdi Bordbar et al., “A colorimetric electronic tongue based on bi-functionalized AuNPs for fingerprint detection of cancer markers,” Sens. Actuators B Chem., vol. 368, p. 132170, Oct. 2022. https://doi.org/10.1016/j.snb.2022.132170 | |
dc.relation | /*ref*/D. Tibaduiza et al., “Electronic Tongues and Noses: A General Overview,” Biosens., vol. 14, no. 4, p. 190, Apr. 2024. https://doi.org/10.3390/bios14040190 | |
dc.relation | /*ref*/J. Rana, and S. Desai, “Recent advances in e-nose for potential applications in Covid-19 infection,” Talanta Open, vol. 10, p. 100363, Dec. 2024. https://doi.org/10.1016/j.talo.2024.10036 | |
dc.relation | /*ref*/M.-R. Lee et al., “Cross-site validation of lung cancer diagnosis by electronic nose with deep learning: a multicenter prospective study,” Respir. Res., vol. 25, no. 1, p. 203, May. 2024. https://doi.org/10.1186/s12931-024-02840-z | |
dc.relation | /*ref*/K.-C. Chen, S.-W. Kuo, R.-H. Shie, and H.-Y. Yang, “Advancing accuracy in breath testing for lung cancer: strategies for improving diagnostic precision in imbalanced data,” Respir. Res., vol. 25, no. 1, p. 32, Jan. 2024. https://doi.org/10.1186/s12931-024-02668-7 | |
dc.relation | /*ref*/S. Kort et al., “Diagnosing Non-Small Cell Lung Cancer by Exhaled Breath Profiling Using an Electronic Nose,” Chest, vol. 163, no. 3, pp. 697–706, Mar. 2023. https://doi.org/10.1016/j.chest.2022.09.042 | |
dc.relation | /*ref*/Y. Saeki et al., “Lung cancer detection in perioperative patients’ exhaled breath with nanomechanical sensor array,” Lung Cancer, vol. 190, p. 107514, Apr. 2024. https://doi.org/10.1016/j.lungcan.2024.107514 | |
dc.relation | /*ref*/V. A. Binson, M. Subramoniam, and L. Mathew, “Prediction of lung cancer with a sensor array based e-nose system using machine learning methods,” Microsyst. Technol., vol. 30, no. 11, pp. 1421–1434, Nov. 2024. https://doi.org/10.1007/s00542-024-05656-5 | |
dc.relation | /*ref*/L. Zhao et al., “A Weighted Discriminative Extreme Learning Machine Design for Lung Cancer Detection by an Electronic Nose System,” IEEE Trans. Instrum. Meas., vol. 70, no. 2509709, pp. 1–9, May. 2021. https://doi.org/10.1109/TIM.2021.3084312 | |
dc.relation | /*ref*/S. Zhang, J. Luo, and M. Lu, “Study on Repeatability, Normalization and Feature Selection of Medical Electronic Nose for Lung Cancer Diagnosis,” in 2020 IEEE 10th Int. Conf. Electr. Infor. Emerg. Communic. (ICEIEC), Beijing, Chi, 2020, pp. 358–361. https://doi.org/10.1109/ICEIEC49280.2020.9152322 | |
dc.relation | /*ref*/S. Zhang et al., “A Universal Calibration Method for Electronic Nose Based on Projection on to Convex Sets,” IEEE Trans. Instrum. Meas., vol. 70, no. 2516012, pp. 1–12, Oct. 2021. https://doi.org/10.1109/TIM.2021.3120149 | |
dc.relation | /*ref*/A. Helen Victoria, and G. Maragatham, “Automatic tuning of hyperparameters using Bayesian optimization,” Evolving Systems, vol. 12, no. 1, pp. 217–223, Mar. 2021. https://doi.org/10.1007/s12530-020-09345-2 | |
dc.relation | /*ref*/D. Theng, and K. K. Bhoyar, “Feature selection techniques for machine learning: a survey of more than two decades of research,” Knowl. Inf. Syst., vol. 66, pp. 1575–1637, Mar. 2023. https://doi.org/10.1007/s10115-023-02010-5 | |
dc.relation | /*ref*/G. Simon, and C. Aliferis, “Overfitting, Underfitting and General Model Overconfidence and Under-Performance Pitfalls and Best Practices in Machine Learning and AI,” in Artificial Intelligence and Machine Learning in Health Care and Medical Sciences, G. Simon and C. Aliferis, Eds., Minneapolis, USA: Springer, 2024, pp. 477-524. https://doi.org/10.1007/978-3-031-39355-6_10 | |
dc.relation | /*ref*/C. Shang, F. Yang, D. Huang, and W. Lyu, “Data-driven soft sensor development based on deep learning technique,” J. Process Control, vol. 24, no. 3, pp. 223–233, Mar. 2014. https://doi.org/10.1016/j.jprocont.2014.01.012 | |
dc.relation | /*ref*/Y. Xu, L. Ju, J. Tong, C. M. Zhou, and J.-J. Yang, “Machine Learning Algorithms for Predicting the Recurrence of Stage IV Colorectal Cancer After Tumor Resection,” Sci. Rep., vol. 10, no. 1, p. 2519, Feb. 2020. https://doi.org/10.1038/s41598-020-59115-y | |
dc.relation | /*ref*/ | |
dc.rights | Derechos de autor 2025 TecnoLógicas | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0 | es-ES |
dc.source | TecnoLógicas; Vol. 28 No. 63 (2025); e3296 | en-US |
dc.source | TecnoLógicas; Vol. 28 Núm. 63 (2025); e3296 | es-ES |
dc.source | 2256-5337 | |
dc.source | 0123-7799 | |
dc.subject | compuestos orgánicos volátiles | es-ES |
dc.subject | diagnóstico no invasivo | es-ES |
dc.subject | espacio de representación | es-ES |
dc.subject | soft metrología | es-ES |
dc.subject | técnicas de aprendizaje | es-ES |
dc.subject | volatile organic compounds | en-US |
dc.subject | non-invasive diagnosis | en-US |
dc.subject | feature space | en-US |
dc.subject | soft metrology | en-US |
dc.subject | learning techniques | en-US |
dc.title | Machine Learning and Soft Sensors of Electronic Nose and Tongue Type for Cancer Detection | en-US |
dc.title | Máquinas de aprendizaje y soft sensores de tipo nariz y lengua electrónica para la detección de cáncer | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion | |
dc.type | Review Article | en-US |
dc.type | Artículos de revisión | es-ES |