Vacuum Impregnation and its Operational Parameters: A Review

dc.creatorOssa Montoya, Valentina
dc.creatorGil, Maritza
dc.creatorCortés, Misael
dc.date2023-05-11
dc.date.accessioned2025-10-01T23:52:52Z
dc.descriptionNowadays, lifestyles are constantly raising awareness about the importance of healthy eating, among which is the promotion of the consumption of functional foods not only to provide a safe and complete nutrition, but also to contribute to the prevention or treatment of oxidative, inflammatory, or infectious processes, among others responsible for diseases that affect a large part of the population. One of the main challenges in the safe and effective production of functional foods is matrix engineering, which presents tools to obtain minimally processed foods by means of vacuum impregnation (IV), preserving to a great extent the ingredients with properties. For this reason, the objective of this article was to perform a systematic review of the necessary parameters to control the IV, to achieve an optimal product according to the required characteristics of the final product in order to serve as a guide for a future implementation of the technique or development of applications. The proposed methodological route consisted of the evaluation of a search equation in the Scopus reference base, followed by a download in databases such as Science Direct, MDPI, Springer Link, Wiley and Taylor & Francis Online, to be filtered with Rayyan and narrowed Vosviewer. From the analysis of the main operating parameters in the IV, it was found that the most influential parameter is the pressure applied, followed by the time elapsed at that pressure, because it can generate structural damage to the plant matrix and the unnecessary outflow of important native fluids, causing changes in the final texture and a low percentage of bioactive components. The impregnation solution should have a concentration with a similar aw to that of the matrix, in order to avoid loss of firmness. According to the findings, the predominant morphology is slices due to the exposed surface area and greater retention of the impregnated compounds, segmenting the typology of the studied fruits. In the red fruits, the peculiarity was found that the standard size of the fruit is used, possibly because its skin is not as thick and allows the IV process to be carried out normally. The impregnated components are vitamins, minerals, phenolic compounds, and flavonoids. The drying technique that best preserves the physical and chemical properties of the matrix is lyophilization.en-US
dc.descriptionComo parte de los estilos de vida actuales se genera una sensibilización acerca de la importancia de una alimentación saludable, en consecuencia, se da una promoción por el consumo de alimentos funcionales para no solo dar respuesta a una nutrición segura y completa, sino también que aporte a la prevención o tratamiento de procesos oxidativos, inflamatorios o infecciosos, los cuales son responsables de enfermedades que afectan una gran parte de la población. La impregnación al vacío (IV) es una herramienta que permite conservar en gran medida los ingredientes naturales de los alimentos, desarrollando así, de forma segura y efectiva, alimentos mínimamente procesados. Por esta razón el objetivo de este artículo consistió en realizar una revisión sistemática de los parámetros necesarios a controlar en la IV, para alcanzar un producto óptimo de acuerdo con las características requeridas del producto final de manera que sirva como guía para una futura implementación de la técnica o desarrollo de aplicaciones. La ruta metodológica propuesta consistió en la evaluación de una ecuación de búsqueda en la base referencial de Scopus, seguida de una descarga en bases de datos, como Science Direct, MDPI, Springer Link, Wiley y Taylor & Francis Online, para luego ser filtrado con Rayyan y acotado en Vosviewer. A partir del análisis de los principales parámetros de operación en la IV se encontró que el parámetro que más influye es la presión aplicada, seguido del tiempo transcurrido a esa presión, debido a que se pueden generar daños estructurales de la matriz vegetal y la salida innecesaria de fluidos nativos importantes, por lo que ocasiona cambios en la textura final y un porcentaje bajo de componentes bioactivos. La solución de impregnación debe ser de una concentración con aw similar al de la matriz, para evitar pérdida de la firmeza. De acuerdo con lo encontrado la morfología que predomina son las rodajas debido al área superficial expuesta y una mayor retención de los compuestos impregnados, segmentando la tipología de frutos estudiados, en los frutos rojos se encontró la particularidad de que se utiliza el tamaño estándar del fruto, posiblemente porque su corteza no es tan gruesa y permite que el proceso de IV se lleve a cabo normalmente. Los componentes impregnados son vitaminas, minerales, compuestos fenólico y flavonoides. La técnica de secado que mejor conserva propiedades físicas y químicas de la matriz es la liofilización.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2605
dc.identifier10.22430/22565337.2605
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7861
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2605/2854
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2605/2861
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2605/2862
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2605/2879
dc.relation/*ref*/E. Luengo Fernández et al., “Alimentos funcionales y nutracéuticos,” Sociedad Española de Cardiología, 2007. Disponible en: https://secardiologia.es/images/publicaciones/libros/2007-sec-monografia-nutraceuticos.pdf
dc.relation/*ref*/J. Castillo Sánchez, Biología Humana, “Salud y Hábitos Saludables: Estrés Oxidativo, Antioxidantes y Salud. (2010-2011)”. Primer Curso de Divulgación Científico-Médica FEM. Molina de Segura. Jan. 2011. Disponible en: https://www.um.es/lafem/Actividades/CursoBiologia/MaterialAyuda/2011-01-11-%20Julian-EstresOxidativo-Antioxidantes-Salud.pdf
dc.relation/*ref*/A. Alvídrez Morales, B. E. González Martínez, and Z. J. S. Jiménez Salas, “Tendencias en la producción de alimentos: Alimentos funcionales,” RESPYN Revista Salud Pública y Nutrición, vol. 3, no. 3, Oct. 2002. https://respyn.uanl.mx/index.php/respyn/article/view/91
dc.relation/*ref*/P. Fito, A. Andrés, A. Chiralt, and P. Pardo, “Coupling of hydrodynamic mechanism and deformation-relaxation phenomena during vacuum treatments in solid porous food-liquid systems,” J Food Eng, vol. 27, no. 3, pp. 229–240, Jan. 1996. https://doi.org/10.1016/0260-8774(95)00005-4
dc.relation/*ref*/P. Fito and R. Pastor, “Non-diffusional mechanisms occurring during vacuum osmotic dehydration,” J Food Eng, vol. 21, no. 4, pp. 513–519, Jan. 1994. https://doi.org/10.1016/0260-8774(94)90070-1
dc.relation/*ref*/E. Betoret, N. Betoret, J. M. Castagnini, P. Rocculi, M. Dalla Rosa, and P. Fito, “Analysis by non-linear irreversible thermodynamics of compositional and structural changes occurred during air drying of vacuum impregnated apple (cv. Granny smith): Calcium and trehalose effects,” J Food Eng, vol. 147, no. C, pp. 95–101, 2015. https://doi.org/10.1016/j.jfoodeng.2014.09.028
dc.relation/*ref*/E. Betoret, E. Sentandreu, N. Betoret, P. Codoñer-Franch, V. Valls-Bellés, and P. Fito, “Technological development and functional properties of an apple snack rich in flavonoid from mandarin juice,” Innovative Food Science and Emerging Technologies, vol. 16, pp. 298–304, Oct. 2012. https://doi.org/10.1016/j.ifset.2012.07.003
dc.relation/*ref*/M. Ouzzani, H. Hammady, Z. Fedorowicz, and A. Elmagarmid, “Rayyan—a web and mobile app for systematic reviews,” Syst Rev, vol. 5, no. 210, Dec. 2016. https://doi.org/10.1186/S13643-016-0384-4
dc.relation/*ref*/N. J. van Eck and L. Waltman, Manual for VOSviewer- versión 1.6.15 (2020). Disponible en: https://www.vosviewer.com
dc.relation/*ref*/Scopus, “Scopus - Document search | Signed in, 2004”. https://www.elsevier.com
dc.relation/*ref*/M. A. Faican Benenaula, A. M. Piagentini, and M. Pirovani, “Vacuum impregnation of fresh-cut apples with osmotic solutions containing honey,” Rev Fac Nac Agron Medellin, vol. 75, no. 3, pp. 10089–10100, Sep. 2022. https://doi.org/10.15446/rfnam.v75n3.99558
dc.relation/*ref*/A. Quintanilla, A. Mencia, J. Powers, B. Rasco, J. Tang, and S. S. Sablani, “Developing vacuum impregnated dehydrofrozen red raspberries with improved mechanical properties,” Drying Technology, vol. 40, no. 2, pp.299-309, Jul. 2020. https://doi.org/10.1080/07373937.2020.1789654
dc.relation/*ref*/L. I. Hinestroza-Córdoba, C. Barrera, L. Seguí, and N. Betoret, “Potential Use of Vacuum Impregnation and High-Pressure Homogenization to Obtain Functional Products from Lulo Fruit (Solanum quitoense Lam.),” Foods, vol. 10, no. 4, p. 817, Apr. 2021. https://doi.org/10.3390/foods10040817
dc.relation/*ref*/J. E. González-Pérez, O. Jiménez-González, N. Ramírez-Corona, J. A. Guerrero-Beltrán, and A. López-Malo, “Vacuum impregnation on apples with grape juice concentrate: Effects of pressure, processing time, and juice concentration,” Innovative Food Science & Emerging Technologies, vol. 77, p. 102981, May 2022. https://doi.org/10.1016/J.IFSET.2022.102981
dc.relation/*ref*/M. S. Lencina, C. dos Santos Ferreira, D. Archaina, M. B. Gómez, and M. F. Mazzobre, “Stability and bioaccessibility of iron in pumpkin discs vacuum impregnated with ferrous gluconate, β-cyclodextrin and ascorbic acid,” LWT, vol. 161, p. 113342, May 2022. https://doi.org/10.1016/J.LWT.2022.113342
dc.relation/*ref*/R. A. B. de Medeiros, E. V. da Silva Júnior, Z. M. P. Barros, J. H. F. da Silva, S. C. R. Brandão, and P. M. Azoubel, “Convective drying of mango enriched with phenolic compounds from grape residue flour under different impregnation methods,” Food Research International, vol. 158, p. 111539, Aug. 2022. https://doi.org/10.1016/J.FOODRES.2022.111539.
dc.relation/*ref*/D. Mierzwa, J. Szadzińska, E. Radziejewska-Kubzdela, R. Biegańska-Marecik, M. Kidoń, and B. Gapiński, “Effectiveness of cranberry (Vaccinium macrocarpon, cv. Pilgrim) vacuum impregnation: The effect of sample pretreatment, pressure, and processing time,” Food and Bioproducts Processing, vol. 134, pp. 223–234, Jul. 2022. https://doi.org/10.1016/J.FBP.2022.06.001
dc.relation/*ref*/J. M. Castagnini, S. Tappi, U. Tylewicz, S. Romani, P. Rocculi, and M. D. Rosa, “Sustainable development of apple snack formulated with blueberry juice and trehalose,” Sustainability, vol. 13, no. 16, p.9204, Aug. 2022. https://doi.org/10.3390/SU13169204
dc.relation/*ref*/Y. Duarte-Correa, O. Vega-Castro, N. López-Barón, and J. Singh, “Fortifying compounds reduce starch hydrolysis of potato chips during gastro-small intestinal digestion in vitro,” Starch, vol. 73, no. 9–10, p. 2000196, Sep. 2021. https://doi.org/10.1002/STAR.202000196
dc.relation/*ref*/M. Kręcisz, B. Stępień, M. Pasławska, J. Popłoński, and K. Dulak, “Physicochemical and quality properties of dried courgette slices: Impact of vacuum impregnation and drying methods,” Molecules, vol. 26, no. 15, p. 4597, Jul. 2021. https://doi.org/10.3390/molecules26154597
dc.relation/*ref*/A. Derossi, M. Francavilla, M. Monteleone, R. Caporizzi, and C. Severini, “From biorefinery of microalgal biomass to vacuum impregnation of fruit. A multidisciplinary strategy to develop innovative food with increased nutritional properties,” Innovative Food Science & Emerging Technologies, vol. 70, p. 102677, Jun. 2021. https://doi.org/10.1016/J.IFSET.2021.102677
dc.relation/*ref*/V. Santarelli et al., “Combined Use of Blanching and Vacuum Impregnation with Trehalose and Green Tea Extract as Pre-treatment to Improve the Quality and Stability of Frozen Carrots,” Food and Bioprocess Technology, vol. 14, pp. 1326–1340, Apr. 2021. https://doi.org/10.1007/S11947-021-02637-8
dc.relation/*ref*/M. Kręcisz, J. Kolniak-Ostek, B. Stępień, J. Łyczko, M. Pasławska, and J. Musiałowska, “Influence of drying methods and vacuum impregnation on selected quality factors of dried sweet potato,” Agriculture, vol. 11, no. 9, p. 858, Sep. 2021. https://doi.org/10.3390/agriculture11090858
dc.relation/*ref*/R. A. Abalos, E. F. Naef, M. V. Aviles, and M. B. Gómez, “Vacuum impregnation: A methodology for the preparation of a ready-to-eat sweet potato enriched in polyphenols,” LWT, vol. 131, p. 109773, Sep. 2020. https://doi.org/10.1016/J.LWT.2020.109773
dc.relation/*ref*/V. Santarelli, L. Neri, G. Sacchetti, C. D. Di Mattia, D. Mastrocola, and P. Pittia, “Response of organic and conventional apples to freezing and freezing pre-treatments: Focus on polyphenols content and antioxidant activity,” Food Chemistry, vol. 308, p. 125570, Mar. 2020. https://doi.org/10.1016/J.FOODCHEM.2019.125570
dc.relation/*ref*/A. Nawirska-Olszańska, M. Pasławska, B. Stępień, M. Oziembłowski, K. Sala, and A. Smorowska, “Effect of vacuum impregnation with apple-pear juice on content of bioactive compounds and antioxidant activity of dried chokeberry fruit,” Foods, vol. 9, no. 1, p. 108, Jan 2020. https://doi.org/10.3390/foods9010108
dc.relation/*ref*/F. M. Yılmaz and A. Zungur Bastıoğlu, “Production of phenolic enriched mushroom powder as affected by impregnation method and air drying temperature,” LWT, vol. 122, p. 109036, Mar. 2020. https://doi.org/10.1016/J.LWT.2020.109036
dc.relation/*ref*/Y. Duarte-Correa, A. Díaz-Osorio, J. Osorio-Arias, P. J. A. Sobral, and O. Vega-Castro, “Development of fortified low-fat potato chips through Vacuum Impregnation and Microwave Vacuum Drying,” Innovative Food Science and Emerging Technologies, vol. 64, P. 102437, Aug. 2020. https://doi.org/10.1016/J.IFSET.2020.102437
dc.relation/*ref*/M. Pasławska, B. Stepien, A. Nawirska-Olszanska, and K. Sala, “Studies on the effect of mass transfer in vacuum impregnation on the bioactive potential of apples,” Molecules, vol. 24, no. 19, p. 3533, Sep. 2019. https://doi.org/10.3390/MOLECULES24193533
dc.relation/*ref*/P. Tiwari and M. Thakur, “Effectiveness of vaccum impregnation treatment and vaccum frying on structural, nutritional and sensory properties of calcium fortified potato chips,” Carpathian Journal of Food Science and Technology, vol. 11, no. 2, pp. 17–28, 2019. https://doi.org/10.34302/crpjfst/2019.11.2.2
dc.relation/*ref*/S. V. Lopez and R. G. Moreira, “Increased Phenolic Compounds in Potato Chips Vacuum Impregnated with Green Tea,” J Food Sci, vol. 84, no. 4, pp. 807–817, Apr. 2019. https://doi.org/10.1111/1750-3841.14492
dc.relation/*ref*/L. Zhang, P. Wang, F. Chen, S. Lai, H. Yu, and H. Yang, “Effects of calcium and pectin methylesterase on quality attributes and pectin morphology of jujube fruit under vacuum impregnation during storage,” Food Chemistry, vol. 289, pp. 40–48, Aug. 2019. https://doi.org/10.1016/J.FOODCHEM.2019.03.008
dc.relation/*ref*/Z. Yang, H. Li, Y. Xu, Y. Liu, H. Kan, and F. Fan, “Vacuum impregnation and drying of iron-fortified water chestnuts,” J Food Process Preserv, vol. 43, no. 12, p. e14260, Dec. 2019. https://doi.org/10.1111/JFPP.14260
dc.relation/*ref*/F. R. Assis, L. G. G. Rodrigues, G. Tribuzi, P. G. de Souza, B. A. M. Carciofi, and J. B. Laurindo, “Fortified apple (Malus spp., var. Fuji) snacks by vacuum impregnation of calcium lactate and convective drying,” LWT, vol. 113, p. 108298, Oct. 2019. https://doi.org/10.1016/J.LWT.2019.108298
dc.relation/*ref*/U. Tylewicz et al., “Chemical and physicochemical properties of semi-dried organic strawberries enriched with bilberry juice-based solution,” LWT, vol. 114, p. 108377, Nov. 2019. https://doi.org/10.1016/J.LWT.2019.108377
dc.relation/*ref*/H. Tong, R. G. Moreira, and M. E. Castell-Perez, “Effect of vacuum impregnation on quality of fresh and electron-beam irradiated highbush blueberries (Vaccinium corymbosum L.) under refrigerated storage,” J Food Process Preserv, vol. 42, no. 9, p. e13680, Sep. 2018. https://doi.org/10.1111/jfpp.13680
dc.relation/*ref*/R. G. Moreira and S. Almohaimeed, “Technology for processing of potato chips impregnated with red rootbeet phenolic compounds,” J Food Eng, vol. 228, pp. 57–68, Jul. 2018. https://doi.org/10.1016/j.jfoodeng.2018.02.010
dc.relation/*ref*/M. Pasławska, A. Nawirska-Olszańska, B. Stępień, and A. Klim, “The Influence of Vacuum Impregnation on Nutritional Properties of Fluidized Bed Dried Kale (Brassica oleracea L. Var. Acephala) Leaves,” Molecules, vol. 23, no.11, Oct. 2018. https://doi.org/10.3390/molecules23112764
dc.relation/*ref*/E. H. Purnomo, F. A. Nindyautami, N. Konsue, and P. Pathomrungsiyounggul, “Fortification of rice grain with gac aril (Momordica conchinchinensis) using vacuum impregnation technique,” Current Research in Nutrition and Food Science, vol. 6, no. 2, pp. 412–424, Aug. 2018. https://doi.org/10.12944/CRNFSJ.6.2.16
dc.relation/*ref*/F. M. Yılmaz and S. Ersus Bilek, “Natural colorant enrichment of apple tissue with black carrot concentrate using vacuum impregnation,” Int J Food Sci Technol, vol. 52, no. 6, pp. 1508–1516, Jun. 2017. https://doi.org/10.1111/IJFS.13426
dc.relation/*ref*/S. Tappi, U. Tylewicz, S. Romani, M. Dalla Rosa, F. Rizzi, and P. Rocculi, “Study on the quality and stability of minimally processed apples impregnated with green tea polyphenols during storage,” Innovative Food Science & Emerging Technologies, vol. 39, pp. 148–155, Feb. 2017. https://doi.org/10.1016/J.IFSET.2016.12.007.
dc.relation/*ref*/M. Santana Moreira, D. de Almeida Paula, E. Maurício Furtado Martins, É. Nascif Rufino Vieira, A. Mota Ramos, and P. C. Stringheta, “Vacuum impregnation of β-carotene and lutein in minimally processed fruit salad,” J Food Process Preserv, vol. 42, no. 3, e13545, Mar. 2018. https://doi.org/10.1111/JFPP.13545
dc.relation/*ref*/Y. A. Cabrera Ordoñez, E. M. Estrada Mesa, and M. Cortés Rodriguez, “The influence of drying on the physiological quality of cape gooseberry (Physalis peruviana L.) fruits added with active components,” Agroindustria y Ciencia de los Alimentos, vol. 66, no. 4, p.512-518, Oct. 2017. https://doi.org/10.15446/acag.v66n4.59507
dc.relation/*ref*/M. Cortés Rodríguez, E. Herrera, and E. Rodríguez Sandoval, “Optimización experimental del proceso de liofilización de uchuva adicionada con componentes activos por impregnación al vacío,” Vitae, vol. 22, no. 1, pp. 47–56, Jul. 2015. https://doi.org/10.17533/udea.vitae.v22n1a06
dc.relation/*ref*/J. M. Castagnini, N. Betoret, E. Betoret, and P. Fito, “Vacuum impregnation and air drying temperature effect on individual anthocyanins and antiradical capacity of blueberry juice included into an apple matrix,” LWT, vol. 64, no. 2, pp. 1289–1296, Dec. 2015. https://doi.org/10.1016/j.lwt.2015.06.044
dc.relation/*ref*/V. Panarese, P. Dejmek, P. Rocculi, and F. Gómez Galindo, “Microscopic studies providing insight into the mechanisms of mass transfer in vacuum impregnation,” Innovative Food Science and Emerging Technologies, vol. 18, pp. 169–176, Apr. 2013. https://doi.org/10.1016/j.ifset.2013.01.008
dc.relation/*ref*/S. L. Ostos, A. C. Díaz, and H. Suarez, “Evaluation process in different conditions of mango fortification (Tommy Atkins) with calcium by vacuum impregnation,” Revista Chilena de Nutrición, Vol. 39, no. 2, pp. 181–190, Jun. 2012. Disponible en: http://www.redalyc.org/articulo.oa?id=46923867007
dc.relation/*ref*/R. Jovanovic-Malinovska, E. Velickova, and E. Winkelhausen, “Development of a quince snack enriched with inulin and stevia,” 6th Central European Congress on Food, Novi Sad, Serbia, 2012. Disponible en: https://www.researchgate.net/publication/257890946
dc.relation/*ref*/A. P. K. Joshi, H. P. V. Rupasinghe, and N. L. Pitts, “Comparison of nonfried apple snacks with commercially available fried snacks,” Food Science and Technology International, vol. 17, no. 3, pp. 249–255, May. 2011. https://doi.org/10.1177/1082013210382337
dc.relation/*ref*/C. Rößle, N. Brunton, T. R. Gormley, and F. Butler, “Quality and antioxidant capacity of fresh-cut apple wedges enriched with honey by vacuum impregnation,” Int J Food Sci Technol, vol. 46, no. 3, pp. 626–634, Mar. 2011. https://doi.org/10.1111/j.1365-2621.2010.02526.x
dc.relation/*ref*/Y. J. Castaño Martelo, M. Rodriguez Cortés, and H. Maecha Suarez, “Desarrollo de apio minimamente procesado fortificado con vitamina E, utilizando la ingeniería de matrices,” Dyna, vol. 78, no. 165, pp. 28–39, Feb. 2011. Disponible en: https://repositorio.unal.edu.co/bitstream/handle/unal/8738/yisellmartelo.2011.pdf?sequence=1&isAllowed=y
dc.relation/*ref*/A. P. K. Joshi, H. P. V Rupasinghe, and N. L. Pitts, “Sensory and nutritional quality of the apple snacks prepared by vacuum impregnation process,” Journal of food quality, vol. 33, no. 6, pp. 679-820, Dec. 2010. https://doi.org/10.1111/j.1745-4557.2010.00349.x
dc.relation/*ref*/A. M. Restrepo, M. Cortés, and B. Rojano, “Enhancement of the antioxidant capacity of strawbeerries (fragaria ananassa Duch.) by incorporation of vitamin e using the vacuum impregnation technique,” Vitae, Revista de la Facultad de Química Farmacéutica, vol. 17, no. 2, pp. 135–140, 2010. Disponible en: https://revistas.udea.edu.co/index.php/vitae/article/view/6274/5793
dc.relation/*ref*/D. Latorre, “Estructura de la membrana plasmática y mecanismos de transporte a través de la membrana,” 2018. Disponible en: http://vinculacion.ucsh.cl/wp-content/uploads/BIOLOG%C3%8DA-2.Estructura-de-la-Membrana-Plasm%C3%A1tica-y-Mecanismos-de-transporte-a-trav%C3%A9s-de-la-membrana.pdf
dc.relation/*ref*/V. Panarese, P. Rocculia, E. Baldi, L. Wadsö, A. G. Rasmusson, and F. Gómez Galindo, “Vacuum impregnation modulates the metabolic activity of spinach leaves,” Innovative Food Science & Emerging Technologies, vol. 26, pp. 286–293, Dec. 2014. https://doi.org/10.1016/j.ifset.2014.10.006
dc.relation/*ref*/S. Martínez-Flórez, J. González-Gallego, J. M. Culebras, M. J. Tuñón, and M. Jesús Tuñón, “Los flavonoides: propiedades y acciones antioxidantes Correspondencia,” Nutr. Hosp, vol. 17, no. 6, pp. 271–278, 2002. Disponible en: http://www.nutricionhospitalaria.com/pdf/3338.pdf
dc.relation/*ref*/Departamento Administrativo Nacional de Estadística, “Boletín del consumidor,” Nov. 2022. https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/sistema-de-informacion-de-precios-sipsa/componente-precios-mayoristas-noviembre-de-2022.
dc.relation/*ref*/Organización Mundial de la Salud, “Alimentación Sana,” Aug. 2018. https://www.who.int/es/news-room/fact-sheets/detail/healthy-diet
dc.relation/*ref*/L. E. Rojas Cancelas, “Estudio microestructural y fisicoquímico con análisis de imágenes y multivariado en diferentes variedades de manzana como herramienta matemática de control de calidad,” (tesis de pregrado), Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Ciudad de México, 2017. Disponible en: http://tesis.ipn.mx/handle/123456789/27072
dc.relation/*ref*/Fundación Española de la Nutrición, “Manzana,” 2010. Disponible en: https://fen.org.es/MercadoAlimentosFEN/pdfs/manzana.pdf
dc.relation/*ref*/Instituto Colombiano de Bienestar Familiar, “Tabla de composición de alimentos colombianos,” 2015. Disponible en: https://www.icbf.gov.co/bienestar/nutricion/tabla-alimentos
dc.relation/*ref*/M. R. Ramirez, L. Geracitano, D. Marti Barros, and A. T. Henriques, “Efectos beneficiosos de extractos de frutas rojas y de sus antocianos,” Bol Latinoam Caribe Plantas Med Aromat, vol. 8, no.6, pp. 456–468, Nov. 2009. Disponible en: http://www.redalyc.org/articulo.oa?id=85617461002
dc.relation/*ref*/M. E. García Pastor, “Contenido en antocianos y compuestos fenólicos en diferentes frutos frescos y deshidratados,” (tesis de maestría), Universidad Miguel Hernández de Elche, Alicante, 2016. Disponible en: http://dspace.umh.es/bitstream/11000/2914/1/TFM%20Garc%C3%ADa%20Pastor%2C%20Mar%C3%ADa%20Emma.pdf
dc.relation/*ref*/G. V. Buitrago, A. P. López, A. P. Coronado, and F. L. Osorno, “Determinación de las características físicas y propiedades mecánicas de papa cultivada en Colombia,” Revista Brasileña de Engenharia Agrícola e Ambiental, vol. 8, no. 1, pp. 102–110, Apr. 2004. https://doi.org/10.1590/S1415-43662004000100015
dc.relation/*ref*/A. Derossi, T. De Pilli, and C. Severini, “Reduction in the pH of vegetables by vacuum impregnation: A study on pepper,” J Food Eng, vol. 99, no. 1, pp. 9–15, Jul. 2010. https://doi.org/10.1016/J.JFOODENG.2010.01.019
dc.relation/*ref*/N. Betoret, J. Martinez-Monzo, P. J. Fito, and P. Fito, “Calcium and iron distribution in fortified vacuum-impregnated fruits determined by electron dispersion X-ray microanalysis,” J Food Sci, vol. 70, no. 1, pp. E26-E30, Jan. 2005. https://doi.org/10.1111/J.1365-2621.2005.TB09033.X
dc.relation/*ref*/D. Salvatori, A. Andrés, A. Chiralt, and P. Fito, “The Response Of Some Properties Of Fruits to Vacuum Impregnation,” Journal of Food Process Engineering, vol. 21, no. 1, pp. 59-73, Feb.1998. https://doi.org/10.1111/j.1745-4530.1998.tb00439.x
dc.relation/*ref*/
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 26 No. 56 (2023); e2605en-US
dc.sourceTecnoLógicas; Vol. 26 Núm. 56 (2023); e2605es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectAlimentos funcionaleses-ES
dc.subjectimpregnación al vacíoes-ES
dc.subjectmatriz vegetales-ES
dc.subjectmecanismo hidrodinámicoes-ES
dc.subjectFunctional foodsen-US
dc.subjectvacuum impregnationen-US
dc.subjectvegetable matrixen-US
dc.subjecthydrodynamic mechanismen-US
dc.titleVacuum Impregnation and its Operational Parameters: A Reviewen-US
dc.titleImpregnación al vacío y sus parámetros operativos: una revisiónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES

Archivos