Evaluation of 3D Microstructured Scaffolds Based on PCL/Fibroin/Silver Nanoparticles as Supports for Skin Cells

dc.creatorÁlvarez Serna, Felipe
dc.creatorMejía Suaza, Mónica Liliana
dc.creatorMoncada, María Elena
dc.creatorUribe-Yunda, Diego Fernando
dc.date2025-09-09
dc.date.accessioned2025-10-01T23:53:17Z
dc.descriptionSkin tissue engineering is a field in which living cells and scaffolds are used to treat defects. This research aimed to fabricate and evaluate three-dimensional microstructured scaffolds made of polycaprolactone (PCL), silk fibroin, and silver nanoparticles (Ag-NPs) using the wet-electrospinning technique. The methodology consisted of extracting fibroin from Bombyx mori cocoons and synthesizing Ag-NPs via chemical reduction, combining them with PCL solutions to create 3D membranes. These membranes were characterized using scanning electron microscopy (SEM), thermal analysis (TGA and DSC), FTIR spectroscopy, and water contact angle (WCA) measurements. In addition, its cytocompatibility was evaluated by MTT assay with the L929 mouse fibroblast cell line. The results showed that the inclusion of fibroin and Ag-NPs improved the hydrophilicity and cytocompatibility of the scaffolds, in accordance with the ISO 10993-5:2009 standard. The wet-electrospinning technique enabled the formation of porous structures with suitable thermal and morphological properties to mimic the extracellular matrix. Finally, it is concluded that the developed scaffolds show high potential for use as substrates for skin tissue regeneration, highlighting the need for further in vivo studies to support their application in clinical settings.  en-US
dc.descriptionLa ingeniería de tejidos de la piel es un campo en el cual se utilizan células vivas y andamios para tratar defectos. Esta investigación tuvo como objetivo fabricar y evaluar andamios tridimensionales microestructurados a partir de policaprolactona (PCL), fibroína de seda y nanopartículas de plata (Ag-NP) mediante la técnica de wet-electrospinning. La metodología empleada consistió en extraer la fibroína de capullos de Bombyx Mori y se sintetizaron Ag-NP mediante reducción química, combinándolas con soluciones de PCL para crear andamios 3D. Estos se caracterizaron a través de microscopía electrónica de barrido (SEM), análisis térmico (TGA y DSC), espectroscopía FTIR y pruebas de ángulo de contacto al agua (WCA). Adicionalmente, se evaluó su citocompatibilidad mediante el ensayo MTT utilizando la línea celular de fibroblastos de ratón L929. Los resultados mostraron que la inclusión de fibroína y Ag-NP mejoró la hidrofília y la citocompatibilidad de los andamios cumpliendo con la norma ISO 10993-5:2009. La técnica de wet-electrospinning permitió obtener estructuras porosas con propiedades térmicas y morfológicas adecuadas para imitar la matriz extracelular. Finalmente, se concluye que los andamios desarrollados muestran una alta viabilidad para su uso como sustrato para la regeneración de tejidos cutáneos, subrayando la necesidad de realizar estudios in vivo que respalden su aplicación en entornos clínicos.  es-ES
dc.formatapplication/pdf
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3345
dc.identifier10.22430/22565337.3345
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7940
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3345/3728
dc.relation/*ref*/T. Weng et al., “3D bioprinting for skin tissue engineering: Current status and perspectives,” J. Tissue Eng., vol. 12, Jul. 2021. https://doi.org/10.1177/20417314211028574
dc.relation/*ref*/V. Choudhary, M. Choudhary, and W. B. Bollag, “Exploring Skin Wound Healing Models and the Impact of Natural Lipids on the Healing Process,” Int. J. Mol. Sci., vol. 25, no. 7, p. 3790, Mar. 2024. https://doi.org/10.3390/IJMS25073790
dc.relation/*ref*/A. S. Carlin, “Essentials of wound care: assessing and managing impaired skin integrity,” Nurs. Stand., vol. 37, no. 10, pp. 69–74, Oct. 2022. https://doi.org/10.7748/NS.2022.E11964
dc.relation/*ref*/F. Afghah et al., “3D printing of silver-doped polycaprolactone-poly (propylene succinate) composite scaffolds for skin tissue engineering,” Biomed. Mater., vol. 15, no. 3, p. 035015, May. 2020. https://doi.org/10.1088/1748-605X/ab7417
dc.relation/*ref*/M. L. Mejía Suaza, Y. Hurtado Henao, and M. E. Moncada Acevedo, “Wet Electrospinning and its Applications: A Review,” TecnoL., vol. 25, no. 54, p. e2223, Jun. 2022. https://doi.org/10.22430/22565337.2223
dc.relation/*ref*/N. Bakhtiary, M. Pezeshki-Modaress, and N. Najmoddin, “Wet-electrospinning of nanofibrous magnetic composite 3-D scaffolds for enhanced stem cells neural differentiation,” Chem. Eng. Sci., vol. 264, p. 118144, Dec. 2022. https://doi.org/10.1016/J.CES.2022.118144
dc.relation/*ref*/M. Shahverdi, S. Seifi, A. Akbari, K. Mohammadi, A. Shamloo, and M. Reza Movahhedy, “Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application,” Sci. Rep., vol. 12, no. 1, p. 19935, Dec. 2022. https://doi.org/10.1038/s41598-022-24275-6
dc.relation/*ref*/C. Jiang, K. Wang, Y. Liu, C. Zhang, and B. Wang, “Textile-based sandwich scaffold using wet electrospun yarns for skin tissue engineering,” J. Mech. Behav. Biomed. Mater., vol. 119, p. 104499, Jul. 2021. https://doi.org/10.1016/j.jmbbm.2021.104499
dc.relation/*ref*/X. Jing, H. Li, H.-Y. Mi, Y.-J. Liu, and Y.-M. Tan, “Fabrication of fluffy shish-kebab structured nanofibers by electrospinning, CO2 escaping foaming and controlled crystallization for biomimetic tissue engineering scaffolds,” Chem. Eng. J., vol. 372, pp. 785–795, Sep. 2019. https://doi.org/10.1016/j.cej.2019.04.194
dc.relation/*ref*/M. Zhang, H. Lin, Y. Wang, G. Yang, H. Zhao, and D. Sun, “Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles,” Appl. Surf. Sci., vol. 414, pp. 52–62, Aug. 2017. https://doi.org/10.1016/j.apsusc.2017.04.052
dc.relation/*ref*/V. Korniienko et al., “Functional and biological characterization of chitosan electrospun nanofibrous membrane nucleated with silver nanoparticles,” Appl. Nanosci., vol. 12, no. 4, pp. 1061–1070, Apr. 2022. https://doi.org/10.1007/S13204-021-01808-5
dc.relation/*ref*/J. Yin, Y. Fang, L. Xu, and A. Ahmed, “High-throughput fabrication of silk fibroin/hydroxypropyl methylcellulose (SF/HPMC) nanofibrous scaffolds for skin tissue engineering,” Int. J. Biol. Macromol., vol. 183, pp. 1210–1221, Jul. 2021. https://doi.org/10.1016/J.IJBIOMAC.2021.05.026
dc.relation/*ref*/K. Yan et al., “3D-bioprinted silk fibroin-hydroxypropyl cellulose methacrylate porous scaffold with optimized performance for repairing articular cartilage defects,” Mater. Des., vol. 225, p. 111531, Jan. 2023. https://doi.org/10.1016/J.MATDES.2022.111531
dc.relation/*ref*/J. Sik Lim et al., “Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold,” Biopolymers, vol. 97, no. 5, pp. 265–275, May. 2012. https://doi.org/10.1002/bip.22016
dc.relation/*ref*/M. Peifen et al., “New skin tissue engineering scaffold with sulfated silk fibroin/chitosan/hydroxyapatite and its application,” Biochem. Biophys. Res. Commun., vol. 640, pp. 117–124, Jan. 2023. https://doi.org/10.1016/J.BBRC.2022.11.086
dc.relation/*ref*/E. Echeverri Correa, D. O. Grajales Lopera, S. Gutiérrez Restrepo, and C. P. Ossa Orozco, “Effective sericin¬fibroin separation from Bombyx mori silkworms fibers and low-cost salt removal from fibroin solution Separación de sericina/fibroína de seda del Bombyx mori y remoción asequible de sales,” Rev. Fac. Ing. Univ. Antioquia, no. 94, pp. 97-101, Oct. 2020. http://hdl.handle.net/10495/24955
dc.relation/*ref*/G. A. Cuervo-Osorio, M. Escobar-Jaramillo, and C. P. Ossa-Orozco, “Diseño factorial 2k para la optimización de la síntesis de nanopartículas de plata para su aplicación en biomateriales,” Rev. ION, vol. 33, no. 1, pp. 17–32, Jun. 2020. https://doi.org/10.18273/revion.v33n1-2020002
dc.relation/*ref*/H. Urena-Saborio, G. Rodríguez, S. Madrigal-Carballo, and S. Gunasekaran, “Characterization and applications of silver nanoparticles-decorated electrospun nanofibers loaded with polyphenolic extract from rambutan (Nepelium lappaceum),” Materialia, vol. 11, p. 100687, Jun. 2020. https://doi.org/10.1016/j.mtla.2020.100687
dc.relation/*ref*/S. Patil, and N. Singh, “Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation,” Colloids Surf. B Biointerfaces, vol. 176, pp. 150–155, Apr. 2019. https://doi.org/10.1016/j.colsurfb.2018.12.067
dc.relation/*ref*/J. P. Gallo Ramírez, and C. P. Ossa Orozco, “Fabricación y caracterización de nanopartículas de plata con potencial uso en el tratamiento del cáncer de piel,” Ing. Des., vol. 37, no. 1, pp. 88–104, Jan. 2019. https://doi.org/10.14482/inde.37.1.6201
dc.relation/*ref*/S. Mohammadzadehmoghadam, and Y. Dong, “Fabrication and characterization of electrospun silk fibroin/gelatin scaffolds crosslinked with glutaraldehyde vapor,” Front. Mater., vol. 6, May. 2019. https://doi.org/10.3389/fmats.2019.00091
dc.relation/*ref*/C. S. Shivananda, B. Lakshmeesha Rao, and Sangappa, “Structural, thermal and electrical properties of silk fibroin–silver nanoparticles composite films,” J. Mater. Sci. Mater. Electron., vol. 31, no. 1, pp. 41–51, Jan. 2020. https://doi.org/10.1007/s10854-019-00786-3
dc.relation/*ref*/M. Buitrago-Vásquez, and C. P. Ossa-Orozco, “Degradation, water uptake, injectability and mechanical strength of injectable bone substitutes composed of silk fibroin and hydroxyapatite nanorods,” Rev. Fac. Ingen., vol. 27, no. 48, pp. 49–60, May. 2018. https://doi.org/10.19053/01211129.v27.n48.2018.8072
dc.relation/*ref*/H. Alissa Alam, A. Deniz Dalgic, A. Tezcaner, C. Ozen, and D. Keskin, “A comparative study of monoaxial and coaxial PCL/gelatin/Poloxamer 188 scaffolds for bone tissue engineering,” Int. J. Polymeric Mater. Polymeric Biomater., vol. 69, no. 6, pp. 339–350, Mar. 2019. https://doi.org/10.1080/00914037.2019.1581198
dc.relation/*ref*/Y. Eun Choe, and G. Hyung Kim, “A PCL/cellulose coil-shaped scaffold via a modified electrohydrodynamic jetting process,” Virtual Phys. Prototyp., vol. 15, no. 4, pp. 403–416, Aug. 2020. https://doi.org/10.1080/17452759.2020.1808269
dc.relation/*ref*/B. Cinici, S. Yaba, M. Kurt, H. C. Yalcin, L. Duta, and O. Gunduz, “Fabrication Strategies for Bioceramic Scaffolds in Bone Tissue Engineering with Generative Design Applications,” Biomimetics, vol. 9, no. 7, p. 409, Jul. 2024. https://doi.org/10.3390/BIOMIMETICS9070409
dc.relation/*ref*/M. Tominac Trcin et al., “Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells,” Polymers, vol. 12, no. 8, p. 1758, Aug. 2020. https://doi.org/10.3390/POLYM12081758
dc.relation/*ref*/Sigma-Aldrich, “Physical Properties of Solvent,” sigmaaldrich.com. Accessed: May 29, 2025. [Online]. Available: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/614/456/labbasics_pg144.pdf?msockid=38c0c889d925620f3c0bdd0ad88a63df
dc.relation/*ref*/Z. Chen et al., “Influences of Process Parameters of Near-Field Direct-Writing Melt Electrospinning on Performances of Polycaprolactone/Nano-Hydroxyapatite Scaffolds,” Polymers, vol. 14, no. 16, p. 3404, Aug. 2022. https://doi.org/10.3390/POLYM14163404
dc.relation/*ref*/B. Maharjan et al., “In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering,” Mater. Sci. Eng. C Mater. Biol. Appl., vol. 114, p. 111056, Sep. 2020. https://doi.org/10.1016/j.msec.2020.111056
dc.relation/*ref*/E. Correa, M. E. Moncada, and V. H. Zapata, “Electrical characterization of an ionic conductivity polymer electrolyte based on polycaprolactone and silver nitrate for medical applications,” Mater. Lett., vol. 205, pp. 155–157, Oct. 2017. https://doi.org/10.1016/j.matlet.2017.06.046
dc.relation/*ref*/T. De Paula de Lima Lima et al., “Poly (ε-caprolactone)-Based Scaffolds with Multizonal Architecture: Synthesis, Characterization, and In Vitro Tests,” Polymers, vol. 15, no. 22, p. 4403, Nov. 2023. https://doi.org/10.3390/POLYM15224403
dc.relation/*ref*/B. Caglayan, and G. Basal, “Electrospun Polycaprolactone / Silk Fibroin Nanofibers Loaded With Curcumin for Wound Dressing Applications,” Digest J. Nanomater. Biostr., vol. 15, no. 4, pp. 1165–1173, Oct-Dec. 2020. https://doi.org/10.15251/DJNB.2020.154.1165
dc.relation/*ref*/M. Rafiei, E. Jooybar, M. J. Abdekhodaie, and M. Alvi, “Construction of 3D fibrous PCL scaffolds by coaxial electrospinning for protein delivery,” Mater. Sci. Eng. C Mater. Biol. Appl., vol. 113, p. 110913, Aug. 2020. https://doi.org/10.1016/J.MSEC.2020.110913
dc.relation/*ref*/
dc.rightsDerechos de autor 2025 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 28 No. 64 (2025); e3345en-US
dc.sourceTecnoLógicas; Vol. 28 Núm. 64 (2025); e3345es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectandamios tridimensionaleses-ES
dc.subjectwet-electrospinninges-ES
dc.subjectfibroína de sedaes-ES
dc.subjectnanopartículas de plataes-ES
dc.subjecttejidos dérmicoses-ES
dc.subjectthree-dimensional scaffoldsen-US
dc.subjectwet-electrospinningen-US
dc.subjectsilk fibroinen-US
dc.subjectsilver nanoparticlesen-US
dc.subjectdermal tissuesen-US
dc.titleEvaluation of 3D Microstructured Scaffolds Based on PCL/Fibroin/Silver Nanoparticles as Supports for Skin Cellsen-US
dc.titleEvaluación de andamios microestructurados 3D con base en PCL/fibroína/nanopartículas de plata como soportes para células de pieles-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
3345_Diagramado_Esp_V1_1.pdf
Tamaño:
984.11 KB
Formato:
Adobe Portable Document Format