Evaluation of a Semi-Continuous Disk-Stack Centrifuge for the Harvest of Tsukamurella Paurometabola C-924 Bacterium

dc.creatorPimentel Pérez, Rafael Marcos
dc.creatorPérez Sánchez, Amaury
dc.creatorZamora Sánchez, Jesús
dc.creatorLópez Sáez, Yovisleydis
dc.creatorSegura Silva, Rutdali María
dc.creatorOlazábal Reyes, Amparo
dc.date2025-04-11
dc.date.accessioned2025-10-01T23:53:15Z
dc.descriptionThe disk stack centrifuge is an equipment widely used in the current biotechnological industry because of the multiple advantages it offers, the most important being its high operational flexibility, robustness, and processing speed. The objective of this research was to evaluate whether a semi-continuous disk stack centrifuge can be used to harvest Tsukamurella paurometabola strain C-924 cells, the active ingredient of the ecological bionematicide HeberNem®, to replace the tubular centrifuges currently used. The methodology used consisted of the development of a type 23 factorial statistical design, in which three input parameters were considered: feed rate [Qalim], wet weight of the diluted cell suspension to be centrifuged [PHalim], and time between discharges [tdesc]. The output parameters considered were wet weight of concentrated biomass [PHbio] and recovery percentage [ %Rec], which must have values greater than 600 g/L and 95 %, respectively, to obtain a corresponding final yield with the quality standards established for this biotechnological product. The results obtained were that the average values for PHbio and %Rec were 657.28 g/L and 97.43 %, respectively, which met the quality standards for this stage. The experimental design was optimized to determine the optimal values for the three input parameters, thus obtaining the following values: 64 L/h for Qalim, 176 g/L for PHalim, and a tdesc of 5 min. The semi-continuous disk stack centrifuge evaluated can be successfully implemented in the harvest step of the HeberNemÒ production process, thus replacing the tubular centrifuges currently employed. The statistical-mathematical programs Statgraphics Centurion® XV.II, Microsoft Excel®, and MATLAB® v7.0.1 were used for data and results processing.en-US
dc.descriptionLa centrífuga de discos constituye un equipo ampliamente utilizado en la industria biotecnológica actual, a causa de las múltiples ventajas que ofrece, siendo las más importantes su elevada flexibilidad operacional, robustez y velocidad de procesamiento. El objetivo de esta investigación fue el de evaluar si una centrífuga de discos del tipo semicontinua puede ser empleada para cosechar células de Tsukamurella paurometabola cepa C-924. principio activo del bionematicida ecológico HeberNem-S®, en sustitución de las centrífugas tubulares utilizadas en la actualidad. La metodología usada consistió en el desarrollo de un diseño estadístico factorial del tipo 23, en el cual se tomaron en cuenta tres parámetros de entrada: caudal de alimentación [Qalim], peso húmedo de la suspensión celular diluida a centrifugar [PHalim], y tiempo entre descargas [tdesc]. Los parámetros de salida tomados en cuenta fueron: peso húmedo de la biomasa concentrada [PHbio] y el porcentaje de recobrado [%Rec], los cuales deben presentar valores superiores a 600 g/L y 95 %, respectivamente, para obtener un rendimiento final acorde con las normas de calidad establecidas para este producto biotecnológico. Los resultados obtenidos fueron que los valores promedios para PHbio y %Rec fueron de 657.28 g/L y 97.43 %, respectivamente, los cuales cumplieron con las normas de calidad para esta etapa. El diseño experimental se optimizó para determinar los valores óptimos para los 3 parámetros de entrada, obteniéndose los siguientes valores: 64 L/h para Qalim, 176 g/L para PHalim y 5 min de tdesc. La centrífuga de discos semicontinua evaluada puede ser implementada satisfactoriamente en la etapa de cosecha del proceso de producción de HeberNem®, reemplazando por tanto las centrífugas tubulares actualmente empleadas. Se emplearon los programas estadístico-matemáticos Statgraphics Centurion® XV.II, Microsoft Excel® y MATLAB® v. 7.0.1 para el procesamiento de los datos y resultados.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3263
dc.identifier10.22430/22565337.3263
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7929
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3263/3633
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3263/3758
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3263/3759
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3263/3760
dc.relation/*ref*/M. C. Flickinger, Downstream industrial biotechnology: recovery and purification. New Jersey, U.S.A.: John Wiley & Sons, Inc., 2013. https://www.wiley.com/en-us/Downstream+Industrial+Biotechnology%3A+Recovery+and+Purification-p-9781118131244
dc.relation/*ref*/R. G. Harrison, P. W. Todd, S. R. Rudge, and D. P. Petrides, Bioseparations science and engineering, 2nd ed. New York, U.S.A.: Oxford University Press, 2015. https://pdfcoffee.com/bioseparations-science-and-e-ngineering-pdf-free.html
dc.relation/*ref*/Y. Chisti, “Strategies in Downstream Processing”, in Bioseparation and Bioprocessing: A Handbook, vol. 2, G. Subramanian, Ed. New York, U.S.A.: Wiley-VCH, 1998, pp. 3-30. https://doi.org/10.1016/S0734-9750(99)00012-9
dc.relation/*ref*/W. W.-F. Leung, Centrifugal Separations in Biotechnology, 2nd ed. Oxford, U.K.: Elsevier, 2020. https://doi.org/10.1016/C2017-0-03265-2
dc.relation/*ref*/Joseph et al., “A Scale-Down Mimic for Mapping the Process Performance of Centrifugation, Depth, and Sterile Filtration”, Biotechnology and Bioengineering, vol. 113, no. 9, pp. 1934-1941, 2016. https://doi.org/10.1002/bit.25967
dc.relation/*ref*/R. Kempken, A. Preissmann, and W. Berthold, “Assessment of a Disc Stack Centrifuge for Use in Mammalian Cell Separation”, Biotechnology and Bioengineering, vol. 46, no. 2, pp. 132-138, 1995. https://doi.org/10.1002/bit.260460206
dc.relation/*ref*/P. H. Chlup, D. Bernard, and G. G. Stewart, “Disc Stack Centrifuge Operating Parameters and Their Impact on Yeast Physiology”, Journal of the Institute of Brewing, vol. 114, no. 1, pp. 45-61, 2008. https://doi.org/10.1002/j.2050-0416.2008.tb00305.x
dc.relation/*ref*/M. Schmidt, R. Krützfeldt, and A. Roß, “Validation of a separator CSA8 regarding sterilization for aseptic processes”, Process Biochemistry, vol. 34, no. 8, pp. 769-776, 1999. https://doi.org/10.1016/S0032-9592(98)00151-4
dc.relation/*ref*/M. Iammarino, J. Nti-Gyabaah, M. Chandler, D. Roush, and K. Göklen, “Impact of Cell Density and Viability on Primary Clarification of Mammalian Cell Broth”, BioProcess International, vol. 5, pp. 38-50, 2007. https://www.bioprocessintl.com/filtration/impact-of-cell-density-and-viability-on-primary-clarification-of-mammalian-cell-broth
dc.relation/*ref*/L. K. Shekhawat, J. Sarkar, R. Gupta, S. Hadpe, and A. S. Rathore, “Application of CFD in Bioprocessing: Separation of mammalian cells using disc stack centrifuge during production of biotherapeutics”, Journal of Biotechnology, vol. 267, pp. 1-11, 2018. https://doi.org/10.1016/j.jbiotec.2017.12.016
dc.relation/*ref*/M. Yang, X. Liu, J. A. Howell, and H. Cheng, “Analysis and estimation/prediction of the disk stack centrifuge separation performance – Scaling from benchtop fixed rotor type to disk stack centrifuges”, Separation Science and Technology, vol. 55, no. 14, pp. 2615-2621, 2019. https://doi.org/10.1080/01496395.2019.1636820
dc.relation/*ref*/L. Stoffels, A. Finlan, G. Mannall, S. Purton, and B. Parker, “Downstream Processing of Chlamydomonas reinhardtii TN72 for Recombinant Protein Recovery”, Frontiers in Bioengineering and Biotechnology, vol. 7, no. 383, pp. 1-13, 2019. https://doi.org/10.3389/fbioe.2019.00383
dc.relation/*ref*/P. Esmaeilnejad-Ahranjani and M. Hajimoradi, “Optimization of industrial-scale centrifugal separation of biological products: comparing the performance of tubular and disc stack centrifuges”, Biochemical Engineering Journal, vol. 178, p. 108281, 2022. https://doi.org/10.1016/j.bej.2021.108281
dc.relation/*ref*/V. Ott et al., “Qualification of a Single-Use Disk Stack Separator for Cell Separation in Mammalian Cell-Based Antibody Production”, Chemie Ingenieur Technik, vol. 94, no. 12, pp. 1-9, 2022. https://doi.org/10.1002/cite.202200096
dc.relation/*ref*/J. König, N. Janssen, and U. Janoske, “Visualization of the deposition mechanisms in disk stack centrifuges with an acrylic glass bowl top and high-speed image processing”, Separation Science and Technology, vol. 56, no. 3, pp. 640-652, 2021. https://doi.org/10.1080/01496395.2020.1728326
dc.relation/*ref*/H. Salte, J. M. P. King, F. Baganz, M. Hoare, and N. J. Titchener-Hooker, “A Methodology for Centrifuge Selection for the Separation of High Solids Density Cell Broths by Visualisation of Performance Using Windows of Operation”, Biotechnology and Bioengineering, vol. 95, no. 6, pp. 1218-1227, 2006. https://doi.org/10.1002/bit.21102
dc.relation/*ref*/M. Marin, J. Mena, R. Franco, E. Pimentel, and I. Sánchez, “Effects of the bacterial-fungal interaction between Tsukamurella paurometabola C-924 and Glomus fasciculatum and Glomus clarum fungi on lettuce microrrizal colonization”, Biotecnología Aplicada, vol. 27, pp. 48-51, 2010. http://scielo.sld.cu/pdf/bta/v27n1/bta05110.pdf
dc.relation/*ref*/M. M. Bruzos, J. M. Campos, P. C. Chávez, R. M. Valdivia, and E. P. Vázquez, “Interacción de Tsukamurella paurometabola C-924 con Rhizobium leguminosarum biovar phaseoli CFH en el cultivo de frijol”, Acta Agronómica, vol. 62, no. 1, pp. 52-58, 2013. http://www.scielo.org.co/pdf/acag/v62n1/v62n1a08.pdf
dc.relation/*ref*/M. Marín et al., “Zea mays L. plant growth promotion by Tsukamurella paurometabola strain C-924”, Biotecnología Aplicada, vol. 30, pp. 105-110, 2013. http://scielo.sld.cu/pdf/bta/v30n2/bta04213.pdf
dc.relation/*ref*/Y. L. Paneque, N. González, L. M. Crespo, J. Zamora, R. M. Segura, and A. Pérez, “Modelo matemático para predecir la estabilidad a temperaturas cercanas al ambiente de la bacteria Brevibacterium celere C-924”, Revista de Investigación, Desarrollo e Innovación, vol. 13, no. 2, pp. 367-379, 2023. https://doi.org/10.19053/20278306.v13.n2.2023.16841
dc.relation/*ref*/P. F. Stanbury, A. Whitaker, and S. J. Hall, Principles of Fermentation Technology, 3rd ed. Oxford, U.K.: Butterworth-Heinemann, 2017. https://doi.org/10.1016/C2013-0-00186-7
dc.relation/*ref*/
dc.rightsDerechos de autor 2025 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 28 No. 62 (2025); e3263en-US
dc.sourceTecnoLógicas; Vol. 28 Núm. 62 (2025); e3263es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectbioingenieríaes-ES
dc.subjectaplicaciones industrialeses-ES
dc.subjectprocesamiento de materialeses-ES
dc.subjectevaluación del desempeñoes-ES
dc.subjectequipamiento de producciónes-ES
dc.subjectbioengineeringen-US
dc.subjectindustry applicationsen-US
dc.subjectmaterials processingen-US
dc.subjectperformance evaluationen-US
dc.subjectproduction equipmenten-US
dc.titleEvaluation of a Semi-Continuous Disk-Stack Centrifuge for the Harvest of Tsukamurella Paurometabola C-924 Bacteriumen-US
dc.titleEvaluación de una centrífuga de discos semicontinua para la cosecha de la bacteria Tsukamurella Paurometabola cepa c-924es-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
3263_MPU_VF_V3_1.pdf
Tamaño:
1.63 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
344281653009.xml
Tamaño:
164.86 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
344281653009.epub
Tamaño:
2.32 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
3760.html
Tamaño:
216.82 KB
Formato:
Hypertext Markup Language