Biotribological Behavior of Prototypes of Ti6Al4V Alloy Implants Manufactured by EBM and Subsequently Anodized

dc.creatorRamírez, Angie
dc.creatorZapata, Camila
dc.creatorVargas, Carlos
dc.creatorTamayo, Adrián
dc.creatorBaena, Libia
dc.creatorCastaño, Juan G.
dc.creatorBotero, Carlos
dc.creatorZuleta, Alejandro
dc.creatorBedoya Ochoa, Nicolás
dc.creatorQuiceno, Enrique
dc.creatorGómez, Maryory
dc.date2023-08-02
dc.date.accessioned2025-10-01T23:52:52Z
dc.descriptionHip joints can be damaged by metabolic (degenerative disease) or mechanical (fracture) causes, limiting their functionality. To restore joint movement, the joint must be replaced by a hip prosthesis. Lubrication, friction, and wear phenomena occur in the joints, which, in turn, are often responsible for the failure of the prosthesis, causing its loosening. The aim of the present study is to evaluate the biotribological behavior of a prototype Ti6Al4V hip prosthesis fabricated by electron beam melting (EBM) additive manufacturing and subsequently surface modified by anodizing. Once the prototype was obtained, some samples were polished for biotribological tests and others for anodizing. The biotribological tests were performed in a ball-on-disk tribometer using 6 mm diameter alumina counterbodies, using a load of 5 N and speeds of 30, 50, and 70 rpm. Wear tracks of 2 mm in diameter were obtained, using a simulated body fluid (SBF) at a temperature of 37 °C as the medium. The EBM process increased hardness of the Ti6Al4V alloy with respect to the conventional forging process. The samples manufactured by EBM and subsequently anodized showed the highest values of friction coefficients, while the samples manufactured by forging and EBM showed similar friction coefficients for all the speeds studied. Additionally, EBM fabricated and subsequently anodized samples showed the lowest wear rate followed by EBM fabricated samples, while forging fabricated samples showed the highest wear rate. Abrasion was found to be the main wear mechanism in all conditions evaluated in the biotribological tests. With the speed of 30 rpm the lowest wear rates were obtained for the Ti6Al4V alloy with the different manufacturing processes, with this same speed the highest wear rates were obtained for the counterbodies of all the biotribological pairs.en-US
dc.descriptionLas articulaciones de la cadera pueden resultar dañadas por causas metabólicas (enfermedad degenerativa) o mecánicas (fractura), limitando su funcionalidad. Para restablecer el movimiento de la articulación, esta debe ser sustituida por una prótesis de cadera. En las articulaciones se producen fenómenos de lubricación, fricción y desgaste que, a su vez, suelen ser responsables del fallo de la prótesis, provocando su aflojamiento. Por tal motivo, el objetivo del presente estudio consistió en evaluar el comportamiento biotribológico de un prototipo de prótesis de cadera de Ti6Al4V manufacturado mediante fabricación aditiva por haz de electrones (EBM) y posteriormente modificado superficialmente mediante anodizado. Una vez obtenido el prototipo, se pulieron algunas muestras para realizar ensayos biotribológicos y otras para anodizarlas. Las pruebas biotribológicas se realizaron en un tribómetro de esfera sobre disco utilizando contracuerpos de alúmina de 6 mm de diámetro, empleando una carga de 5 N y velocidades de 30, 50 y 70 rpm. Se obtuvieron huellas de desgaste de 2 mm de diámetro, utilizando como medio un fluido corporal simulado (SBF) a una temperatura de 37 °C. El proceso EBM incrementó la dureza de la aleación Ti6Al4V respecto al proceso de forja convencional. Las muestras fabricadas por EBM, y posteriormente anodizadas, revelaron los valores más altos de coeficientes de fricción, mientras que las muestras fabricadas por forja y EBM indicaron coeficientes de fricción similares para todas las velocidades estudiadas. Adicionalmente, las muestras fabricadas por EBM, y después anodizadas, señalaron la menor tasa de desgaste, seguidas por las muestras fabricadas por EBM, mientras que las muestras fabricadas por forja evidenciaron la mayor tasa de desgaste. Igualmente, se encontró abrasión como principal mecanismo de desgaste en todas las condiciones evaluadas en las pruebas biotribológicas. Con la velocidad de 30 rpm se obtuvieron las menores tasas de desgaste para la aleación de Ti6Al4V con los diferentes procesos de fabricación; con esta misma velocidad se obtuvieron las mayores tasas de desgaste de los contracuerpos de todos los pares biotribológicos.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2642
dc.identifier10.22430/22565337.2642
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7865
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2642/2906
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2642/2913
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2642/3131
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2642/3208
dc.relation/*ref*/S. Durdu, M. Usta, and A. S. Berkem, “Bioactive coatings on Ti6Al4V alloy formed by plasma electrolytic oxidation,” Surf. Coatings Technol., vol. 301, pp. 85-93, Sep. 2016. https://doi.org/10.1016/j.surfcoat.2015.07.053
dc.relation/*ref*/J. Damon et al., “Mechanical surface treatment of EBM Ti6Al4V components: Effects of the resulting surface layer state on fatigue mechanisms and service life,” Mater. Sci. & Eng. A, vol. 849, p. 143422, Aug. 2022. https://doi.org/10.1016/j.msea.2022.143422
dc.relation/*ref*/L.-C. Zhang, L.-Y. Chen, and L. Wang, “Surface Modification of Titanium and Titanium Alloys: Technologies, Developments, and Future Interests,” Adv. Eng. Mater., vol. 22, no. 5, p. 1901258, Dec. 2019. https://doi.org/10.1002/adem.201901258
dc.relation/*ref*/M. T. Mathew, V. A. Barão, J. C.-C. Yuan, W. G. Assunção, C. Sukotjo, M. A. Wimmer, “What is the role of lipopolysaccharide on the tribocorrosive behavior of titanium?,” J. Mech. Behav. Biomed. Mater., vol. 8, pp. 71-85, Apr. 2012. https://doi.org/10.1016/j.jmbbm.2011.11.004 71-85
dc.relation/*ref*/M. T. Mathew, P. P Srinivasa, R. Pourzal, A. Fischer, and M. A. Wimmer, “Significance of tribocorrosion in biomedical applications: Overview and current status,” Adv. Tribol., vol. 2009, p. 250986, Jan. 2010. https://doi.org/10.1155/2009/250986
dc.relation/*ref*/Y. Yan, A. Neville, D. Dowson, and S. Williams, “Tribocorrosion in implants-assessing high carbon and low carbon Co–Cr–Mo alloys by in situ electrochemical measurements,” Tribol. Int., vol. 39, no. 12, pp. 1509-1517, Dec. 2006. https://doi.org/10.1016/j.triboint.2006.01.016
dc.relation/*ref*/J. M. Ríos, D. Quintero, J. G. Castaño, F. Echeverría, and M. A. Gómez, “Effect of EDTA addition on the biotribological properties of coatings obtained from PEO on the Ti6Al4V alloy in a phosphate-based solution,” Surf. and Interfaces, vol. 30, pp. 101857, Jun. 2022. https://doi.org/10.1016/j.surfin.2022.101857
dc.relation/*ref*/M. A. McGee et al., “Implant retrieval studies of the wear and loosening of prosthetic joints: a review,” Wear, vol. 241, no. 2, pp. 158-165, Jul. 2000. https://doi.org/10.1016/S0043-1648(00)00370-7
dc.relation/*ref*/Y. Yan, A. Neville, and D. Dowson, “Tribo-corrosion properties of cobalt-based medical implant alloys in simulated biological environments,” Wear, vol. 263, no. 7-12, pp. 1105-1111, Sep. 2007. https://doi.org/10.1016/j.wear.2007.01.114
dc.relation/*ref*/S. S. Brown and I. C. Clarke, “A review of lubricant conditions for wear simulation in artificial hip replacements,” Tribol. Trans., vol. 49, no. 1, pp. 72-78, Mar. 2007. https://doi.org/10.1080/05698190500519223
dc.relation/*ref*/M. W. Diamanti et al., “Multi-step anodizing on Ti6Al4V components to improve tribomechanical performances,” Surf. Coatings Technol., vol. 227, pp. 19–27, Jul. 2013. https://doi.org/10.1016/j.surfcoat.2012.12.019
dc.relation/*ref*/X. Liu, P. K. Chu, and C. Ding, “Surface modification of titanium, titanium alloys, and related materials for biomedical applications,” Mater. Sci. Eng. R Reports, vol. 47, no. 3–4, pp. 49–121, Dec. 2004. https://doi.org/10.1016/j.mser.2004.11.001
dc.relation/*ref*/H. Jun-xiang, C. Yu-lin, T. Wen-bin, Z. Ting-Yan, and C. Ying-liang, “The black and white coatings on Ti-6Al-4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte,” Appl. Surf. Sci., vol. 428, pp. 684–697, Jan. 2018. https://doi.org/10.1016/j.apsusc.2017.09.109
dc.relation/*ref*/T. Wu et al., “Role of phosphate, silicate and aluminate in the electrolytes on PEO coating formation and properties of coated Ti6Al4V alloy,” Ap. Surf. Sci., vol. 595, p. 153523, Sep. 2022. https://doi.org/10.1016/j.apsusc.2022.153523
dc.relation/*ref*/X. L. Zhang, Z. H. Jiang, Z. P. Yao, and Z. D. Wu, “Electrochemical study of growth behaviour of plasma electrolytic oxidation coating on Ti6Al4V: Effects of the additive,” Corros. Sci., vol. 52, no. 10, pp. 3465–3473, Oct. 2010. https://doi.org/10.1016/j.corsci.2010.06.017
dc.relation/*ref*/D. Quintero et al., “Control of the physical properties of anodic coatings obtained by plasma electrolytic oxidation on Ti6Al4V alloy,” Surf. Coatings Technol., vol. 283, pp. 210–222, Dec. 2015. https://doi.org/10.1016/j.surfcoat.2015.10.052
dc.relation/*ref*/S. Durdu and M. Usta, “The tribological properties of bioceramic coatings produced on Ti6Al4V alloy by plasma electrolytic oxidation,” Ceram. Int., vol. 40, no. 2, pp. 3627–3635, Mar. 2014. https://doi.org/10.1016/j.ceramint.2013.09.062
dc.relation/*ref*/D. Wei, Y. Zhou, D. Jia, and Y. Wang, “Formation of CaTiO3/TiO2 Composite Coating on Titanium Alloy for Biomedical Applications,” Journal of Biomedical Materials Research Part B Applied Biomaterials, vol. 84B, no. 2, pp. 444–451, Feb. 2008. https://doi.org/10.1002/jbm.b.30890
dc.relation/*ref*/E. Byon, Y. Jeong, A. Takeuchi, M. Kamitakahara, and C. Ohtsuki, “Apatite-forming ability of micro-arc plasma oxidized layer of titanium in simulated body fluids,” Surf. Coatings Technol., vol. 201, no. 9-11, pp. 5651–5654, Feb. 2007. https://doi.org/10.1016/j.surfcoat.2006.07.051
dc.relation/*ref*/A. Lugovskoy and S. Lugovskoy, “Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys,” Mater. Sci. Eng. C, vol. 43, pp. 527–532, Oct. 2014. https://doi.org/10.1016/j.msec.2014.07.030
dc.relation/*ref*/J. M. Ríos, D. Quintero, J. G. Castaño, F. Echeverría and M. A. Gómez, “Comparison among the lubricated and unlubricated tribological behavior of coatings obtained by PEO on the Ti6Al4V alloy in alkaline solutions,” Tribology International, vol. 128, pp. 1-8, Dec. 2018. https://doi.org/10.1016/j.triboint.2018.07.010
dc.relation/*ref*/M. Attaran, “The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing,” Bus. Horiz., vol. 60, no. 5, pp. 677–688, Sep. 2017. https://doi.org/10.1016/j.bushor.2017.05.011
dc.relation/*ref*/S. Aravind Shanmugasundaram, J. Razmi, M. J. Mian and L. Ladani, “Mechanical anisotropy and surface roughness in additively manufactured parts fabricated by stereolithography (SLA) using statistical analysis,” Mater., vol. 13, no. 11, p. 2496, May. 2020. https://doi.org/10.3390/ma13112496
dc.relation/*ref*/L. E. Murr, et al., “Metal fabrication by additive manufacturing using laser and electron beam melting technologies,” J. Mater. Sci. Technol., vol. 28 no. 1, pp. 1-14, Jan. 2012. https://doi.org/10.1016/S1005-0302(12)60016-4
dc.relation/*ref*/S. Rawal, J. Brantley, and N. Karabudak, “Additive manufacturing of Ti-6Al-4V alloy components for spacecraft applications,” In 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, 2013, pp. 5-11. https://doi.org/10.1109/RAST.2013.6581260
dc.relation/*ref*/F. Scherillo, E. Manco, A. El Hassanin, S. Franchitti, C. Pirozzi, R. Borrelli, “Chemical surface finishing on electron beam melting Ti6Al4V using HF-HNO3 solutions,” J. Manu. Processes, vol. 60, pp. 400-409, Dec. 2020. https://doi.org/10.1016/j.jmapro.2020.10.033
dc.relation/*ref*/American Society for Testing and Materials, "Standard Terminology for Additive Manufacturing Technologies," USA, ASTM F2792-12, 2012. https://web.mit.edu/2.810/www/files/readings/AdditiveManufacturingTerminology.pdf
dc.relation/*ref*/N. Uçak, A. Çiçek, and K. Aslantas, “Machinability of 3D printed metallic materials fabricated by selective laser melting and electron beam melting: A review,” J. Manuf. Proc., vol. 80, pp. 414-457, Aug. 2022. https://doi.org/10.1016/j.jmapro.2022.06.023
dc.relation/*ref*/D. Mallipeddi et al., “Surface Integrity of Machined Electron Beam Melted Ti6Al4V Alloy Manufactured with Different Contour Settings and Heat Treatment,” Procedia CIRP, vol. 87, pp. 327-332, 2020. http://doi.org/10.1016/j.procir.2020.02.091
dc.relation/*ref*/R. Bertolini, L. Lizzul, S. Bruschi, and A. Ghiotti, “On the surface integrity of Electron Beam Melted Ti6Al4V after machining,” Procedia CIRP, vol. 82, pp. 326-331, 2019. http://doi.org/10.1016/j.procir.2019.04.166
dc.relation/*ref*/A. A. Ramirez et al., “Biotribological behavior of Ti6Al4V alloy fabricated by EBM and subsequently anodized,” In Proceedings, 2022, pp. 404–410. https://www.diva-portal.org/smash/record.jsf?pid=diva2%3A1738552&dswid=5350
dc.relation/*ref*/R. Bertolini, S. Bruschi, A. Ghiotti, L. Pezzato, and M. Dabalà, “Influence of the machining cooling strategies on the dental tribocorrosion behaviour of wrought and additive manufactured Ti6Al4V,” Biotribology, vol. 11, pp. 60-68, Sep. 2017. http://dx.doi.org/10.1016/j.biotri.2017.03.002
dc.relation/*ref*/M. A. Gómez, “Caracterización de las propiedades tribológicas de los recubrimientos duros,” Tesis de doctorado, Departament de Física Aplicada i Òptica, Universitat de Barcelona, Barcelona, 2006. http://diposit.ub.edu/dspace/handle/2445/41791
dc.relation/*ref*/S. Bruschi, R. Bertolini, and A. Ghiotti, “Coupling machining and heat treatment to enhance the wear behaviour of an Additive Manufactured Ti6Al4V titanium alloy,” Tribology International, vol. 116, pp. 58-68, Dec. 2017. http://dx.doi.org/10.1016/j.triboint.2017.07.004
dc.rightsDerechos de autor 2023 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 26 No. 57 (2023); e2642en-US
dc.sourceTecnoLógicas; Vol. 26 Núm. 57 (2023); e2642es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectAnodizingen-US
dc.subjectbiotribological behavioren-US
dc.subjectEBMen-US
dc.subjectadditive manufacturingen-US
dc.subjecthip prosthesisen-US
dc.subjectAnodizadoes-ES
dc.subjectcomportamiento biotribológicoes-ES
dc.subjecthaz de electrones (EBM)es-ES
dc.subjectmanufactura aditivaes-ES
dc.subjectprótesis de caderaes-ES
dc.titleBiotribological Behavior of Prototypes of Ti6Al4V Alloy Implants Manufactured by EBM and Subsequently Anodizeden-US
dc.titleComportamiento biotribológico de prototipos de implantes de la aleación Ti6Al4V fabricados por EBM y posteriormente anodizadoses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos