Integrating Information Visualization and Dimensionality Reduction: A pathway to Bridge the Gap between Natural and Artificial Intelligence

dc.creatorPeluffo-Ordóñez, Diego H.
dc.date2021-08-06
dc.date.accessioned2025-10-01T23:52:45Z
dc.descriptionBy importing some natural abilities from human thinking into the design of computerized decision support systems, a cross-cutting trend of intelligent systems has emerged, namely, the synergetic integration between natural and artificial intelligence. While natural intelligence provides creative, parallel, and holistic thinking, its artificial counterpart is logical, accurate, able to perform complex and extensive calculations, and tireless. In the light of such integration, two concepts are important: controllability and interpretability. The former is defined as the ability of computerized systems to receive feedback and follow users’ instructions, while the latter refers to human-machine communication. A suitable alternative to simultaneously involve these two concepts—and then bridging the gap between natural and artificial intelligence—is bringing together the fields of dimensionality reduction (DimRed) and information visualization (InfoVis).en-US
dc.descriptionBy importing some natural abilities from human thinking into the design of computerized decision support systems, a cross-cutting trend of intelligent systems has emerged, namely, the synergetic integration between natural and artificial intelligence. While natural intelligence provides creative, parallel, and holistic thinking, its artificial counterpart is logical, accurate, able to perform complex and extensive calculations, and tireless. In the light of such integration, two concepts are important: controllability and interpretability. The former is defined as the ability of computerized systems to receive feedback and follow users’ instructions, while the latter refers to human-machine communication. A suitable alternative to simultaneously involve these two concepts—and then bridging the gap between natural and artificial intelligence—is bringing together the fields of dimensionality reduction (DimRed) and information visualization (InfoVis).es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2108
dc.identifier10.22430/22565337.2108
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7799
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2108/2107
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2108/2110
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2108/2130
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2108/2131
dc.relation/*ref*/J. C. Alvarado-Pérez; D. H. Peluffo-Ordóñez; R. Therón, “Bridging the gap between human knowledge and machine learning,” ADCAIJ Adv. Distrib. Comput. Artif. Intell. J., vol. 4, no. 1, pp. 54-64, Oct. 2015. https://doi.org/10.14201/ADCAIJ2015415464
dc.relation/*ref*/I. Borg; P. Groenen, Modern multidimensional scaling: Theory and applications. Springer, 2005.
dc.relation/*ref*/M. Belkin; P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data representation,” Neural Comput., vol. 15, no. 6, pp. 1373–1396, Jun. 2003. https://doi.org/10.1162/089976603321780317
dc.relation/*ref*/S. T. Roweis; L. K. Saul, “Nonlinear dimensionality reduction by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000. https://doi.org/10.1126/science.290.5500.2323
dc.relation/*ref*/G. E. Hinton; S. T. Roweis, “Stochastic neighbor embedding,” in Advances in neural information processing systems, pp. 833–840, 2002. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.441.8882&rep=rep1&type=pdf
dc.relation/*ref*/J. A. Lee; M. Verleysen, Nonlinear dimensionality reduction. Springer, 2007.
dc.relation/*ref*/D. H. Peluffo; J. A. Lee; M. Verleysen, “Recent methods for dimensionality reduction: A brief comparative analysis,” 2014 European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2014), Bruges, 2014. https://dial.uclouvain.be/pr/boreal/object/boreal:171353
dc.relation/*ref*/D. H. Peluffo-Ordóñez; J. A. Lee; M. Verleysen, “Short Review of Dimensionality Reduction Methods Based on Stochastic Neighbour Embedding,” in Advances in Intelligent Systems and Computing, 2014, pp. 65–74. https://doi.org/10.1007/978-3-319-07695-9_6
dc.relation/*ref*/J. A. Lee; M. Verleysen, “Quality assessment of dimensionality reduction: Rank-based criteria,” Neurocomputing, vol. 72, no. 7, pp. 1431–1443, Mar. 2009. https://doi.org/10.1016/j.neucom.2008.12.017
dc.relation/*ref*/L. der Maaten; G. Hinton, “Visualizing data using t-SNE,” J. Mach. Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008. https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf?fbclid=IwA
dc.relation/*ref*/J. A. Lee; D. H. Peluffo-Ordóñez; M. Verleysen, “Multi-scale similarities in stochastic neighbour embedding: Reducing dimensionality while preserving both local and global structure,” Neurocomputing, vol. 169, pp. 246–261, Dec. 2015. https://doi.org/10.1016/j.neucom.2014.12.095
dc.relation/*ref*/M. Zastrow, “Data visualization: Science on the map,” Nature, vol. 519, no. 7541, pp. 119–120, Mar. 2015. https://doi.org/10.1038/519119a
dc.relation/*ref*/M. C. Ortega-Bustamante et al., “Introducing the Concept of Interaction Model for Interactive Dimensionality Reduction and Data Visualization,” International Conference on Computational Science and Its Applications. Springer, 2020. https://doi.org/10.1007/978-3-030-58802-1_14
dc.rightsDerechos de autor 2021 TecnoLógicases-ES
dc.sourceTecnoLógicas; Vol. 24 No. 51 (2021); e2108en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 51 (2021); e2108es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectDimensionality Reductionen-US
dc.subjectInformation Visualizationen-US
dc.subjectDimensionality Reductiones-ES
dc.subjectInformation Visualizationes-ES
dc.titleIntegrating Information Visualization and Dimensionality Reduction: A pathway to Bridge the Gap between Natural and Artificial Intelligenceen-US
dc.titleIntegración de la visualización de la información y la reducción de la dimensionalidad: un camino para cerrar la brecha entre la inteligencia natural y la artificiales-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeEditorialen-US
dc.typeEditoriales-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
revistatecnologicas_2108-Editorial_Final.pdf
Tamaño:
274.86 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
ojsitm_344265925017.xml
Tamaño:
23.4 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
ojsitm_344265925017.epub
Tamaño:
324.63 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
2131.html
Tamaño:
47.49 KB
Formato:
Hypertext Markup Language