Support Vector Machines for Biomarkers Detection in in vitro and in vivo Experiments of Organochlorines Exposure

dc.creatorLopera-Rodríguez, Jorge Alejandro
dc.creatorZuluaga, Martha
dc.creatorJaramillo-Garzón , Jorge Alberto
dc.date2021-12-16
dc.date.accessioned2025-10-01T23:52:44Z
dc.descriptionMetabolomic studies generate large amounts of data, whose complexity increases if they are derived from in vivo experiments. As a result, analysis methods highly used in metabolomics, such as Partial Least Squares Discriminant Analysis (PLS-DA), can have particular difficulties with this type of data. However, there is evidence that indicates that Support Vector Machines (SVMs) can better deal with complex data. On the other hand, chronic exposure to organochlorines is a public health problem. It has been associated with diseases such as cancer. Therefore, its identification is relevant to reduce their impact on human health. This study explores the performance of SVMs in classifying metabolic profiles and identifying relevant metabolites in studies of exposure to organochlorines. For this purpose, two experiments were conducted: in the first one, organochlorine exposure was evaluated in HepG2 cells; and, in the second one, it was evaluated in serum samples of agricultural workers exposed to pesticides. The performance of SVMs was compared with that of PLS-DA. Four kernel functions were assessed in SVMs, and the accuracy of both methods was evaluated using a k-fold cross-validation test. In order to identify the most relevant metabolites, Recursive Feature Elimination (RFE) was used in SVMs and Variable Importance in Projection (VIP) in PLS-DA. The results show that SVMs exhibit a higher percentage of accuracy with fewer training samples and better performance in classifying the samples from the exposed agricultural workers. Finally, a workflow based on SVMs for the identification of biomarkers in samples with high biological complexity is proposed.en-US
dc.descriptionLos estudios en metabolómica generan gran cantidad de datos cuya complejidad aumenta si surgen de experimentos in vivo. A pesar de esto, métodos ampliamente usados en metabolómica como el análisis discriminante por mínimos cuadrados parciales (PLS-DA) tienen dificultades con este tipo de datos, sin embargo, hay evidencia que las máquinas de vectores de soporte (SVM) pueden tener un mejor desempeño. Por otro lado, la exposición crónica a organoclorados es un problema de salud pública. Esta se asocia a enfermedades como el cáncer. Identificarla exposición es relevante para disminuir su impacto. Este estudio tuvo como objetivo explorar el rendimiento de las SVM en la clasificación de perfiles metabolómicos e identificación de metabolitos relevantes en estudios de exposición a organoclorados. Se realizaron dos experimentos: primero se evaluó la exposición a organoclorados en células HepG2. Luego, se evaluó la exposición a pesticidas en muestras de suero de trabajadores agrícolas. El rendimiento de las SVM se comparó con PLS-DA. Se evaluaron cuatro funciones kernel en SVM y la precisión de ambos métodos se evaluó mediante prueba de validación cruzada k-fold. Para identificar los metabolitos relevantes, se utilizó eliminación recursiva de características (RFE) en SVM y la proyección de importancia de variables (VIP) se usó en PLS-DA. Los resultados mostraron que las SVM tuvieron mayor precisión en la clasificación de los trabajadores agrícolas expuestos usando menos muestras de entrenamiento. Se propone un flujo de trabajo basado en SVM que permita la identificación de biomarcadores en muestras con alta complejidad biológica.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2088
dc.identifier10.22430/22565337.2088
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7797
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2088/2212
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2088/2226
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2088/2227
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2088/2248
dc.relation/*ref*/J. C. Lindon; J. K. Nicholson: E. Holmes, The Handbook of Metabonomics and Metabolomics. Elsevier, 2007.
dc.relation/*ref*/E. C. Horning; M. G. Horning, “Human Metabolic Profiles Obtained by GC and GC/MS,” J. Chromatogr. Sci., vol. 9, no. 3, pp. 129–140, Mar. 1971. https://doi.org/10.1093/chromsci/9.3.129
dc.relation/*ref*/S. Mahadevan; S. L. Shah; T. J. Marrie; C. M. Slupsky, “Analysis of Metabolomic Data Using Support Vector Machines,” Anal. Chem., vol. 80, no. 19, pp. 7562–7570, Sep. 2008. https://doi.org/10.1021/ac800954c
dc.relation/*ref*/C. Cortes; V. Vapnik, “Support-vector networks,” Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995. https://doi.org/10.1007/BF00994018
dc.relation/*ref*/A. Alonso; S. Marsal; A. JuliÃ, “Analytical Methods in Untargeted Metabolomics: State of the Art in 2015,” Front. Bioeng. Biotechnol., vol. 3, p. 23, Mar. 2015. https://doi.org/10.3389/fbioe.2015.00023
dc.relation/*ref*/J. Heinemann; A. Mazurie; M. Tokmina-Lukaszewska; G. J. Beilman; B. Bothner, “Application of support vector machines to metabolomics experiments with limited replicates,” Metabolomics, vol. 10, no. 6, pp. 1121–1128, Dec. 2014, https://doi.org/10.1007/s11306-014-0651-0
dc.relation/*ref*/K. M. Mendez; S. N. Reinke; D. I. Broadhurst, “A comparative evaluation of the generalised predictive ability of eight machine learning algorithms across ten clinical metabolomics data sets for binary classification,” Metabolomics, vol. 15, no. 12, p. 150, Nov. 2019. https://doi.org/10.1007/s11306-019-1612-4
dc.relation/*ref*/P. S. Gromski et al., “A tutorial review: Metabolomics and partial least squares-discriminant analysis – a marriage of convenience or a shotgun wedding,” Anal. Chim. Acta, vol. 879, pp. 10–23, Jun. 2015. https://doi.org/10.1016/j.aca.2015.02.012
dc.relation/*ref*/I. Guyon; J. Weston; S. Barnhill; V. Vapnik, “Gene selection for cancer classification using support vector machines,” Mach. Learn., vol. 46, no. 1, pp. 389–422, Jan. 2002. https://doi.org/10.1023/A:1012487302797
dc.relation/*ref*/W. Guan et al., “Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines,” BMC Bioinformatics, vol. 10, no. 259, Aug. 2009. https://doi.org/10.1186/1471-2105-10-259
dc.relation/*ref*/X. Lin et al., “A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information,” J. Chromatogr. B, vol. 910, pp. 149–155, Dec. 2012. https://doi.org/10.1016/j.jchromb.2012.05.020
dc.relation/*ref*/M. Abdollahi; A. Ranjbar; S. Shadnia; S. Nikfar; A. Rezaiee, “Pesticides and oxidative stress: a review,” Med. Sci. Monit., vol. 10, no. 6, Jun. 2004.https://pubmed.ncbi.nlm.nih.gov/15173684/
dc.relation/*ref*/V. Moses; J. V. Peter, “Acute intentional toxicity: endosulfan and other organochlorines,” Clin. Toxicol., vol. 48, no. 6, pp. 539–544, Jul. 2010. https://doi.org/10.3109/15563650.2010.494610
dc.relation/*ref*/R. Jayaraj; P. Megha; P. Sreedev, “Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment,” Interdiscip. Toxicol., vol. 9, no. 3–4, p. 90- 100, Dec. 2016. https://doi.org/10.1515/intox-2016-0012
dc.relation/*ref*/M. Zuluaga; J. J. Melchor; F. A. Tabares-Villa; G. Taborda; J. C. Sepúlveda-Arias, “Metabolite Profiling to Monitor Organochlorine Pesticide Exposure in HepG2 Cell Culture,” Chromatographia, vol. 79, no. 17–18, pp. 1061–1068, Sep. 2016. https://doi.org/10.1007/s10337-016-3031-2
dc.relation/*ref*/O. Fiehn; T. Kind, “Metabolite Profiling in Blood Plasma,” in Metabolomics, Springer, 2007, pp. 3–17. https://doi.org/10.1007/978-1-59745-244-1_1
dc.relation/*ref*/O. Fiehn et al., “Quality control for plant metabolomics: reporting MSI-compliant studies,” Plant J., vol. 53, no. 4, pp. 691–704, Feb. 2008. https://doi.org/10.1111/j.1365-313X.2007.03387.x
dc.relation/*ref*/J. Chong; D. S. Wishart; J. Xia, “Using MetaboAnalyst 4.0 for Comprehensive and Integrative Metabolomics Data Analysis,” Curr. Protoc. Bioinforma., vol. 68, no. 1, p. e86, Sep. 2019. https://doi.org/10.1002/cpbi.86
dc.relation/*ref*/L. Eriksson, Introduction to multi-and megavariate data analysis using projection methods (PCA & PLS). Umetrics AB, 1999.
dc.relation/*ref*/R. C. Team, “R: A language and environment for statistical computing,” 2013. https://www.yumpu.com/en/document/read/6853895/r-a-language-and-environment-for-statistical-computing
dc.relation/*ref*/M. Campbell, “RStudio Projects,” in Learn RStudio IDE, Berkeley, CA: Apress, 2019, pp. 39–48. https://doi.org/10.1007/978-1-4842-4511-8_4
dc.relation/*ref*/D. Meyer et al., “Package ‘e1071, Misc Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), TU Wien’”, versió 1.7-9, R J., 2019. http://sunsite2.icm.edu.pl/pub/unix/math/cran/web/packages/e1071/e1071.pdf
dc.relation/*ref*/H. Zheng et al., “Predictive diagnosis of major depression using NMR-based metabolomics and least-squares support vector machine,” Clin. Chim. Acta, vol. 464, pp. 223–227, Jan. 2017. https://doi.org/10.1016/j.cca.2016.11.039
dc.relation/*ref*/B. Feizizadeh; M. S. Roodposhti; T. Blaschke; J. Aryal, “Comparing GIS-based support vector machine kernel functions for landslide susceptibility mapping,” Arab. J. Geosci., vol. 10, no. 122, Mar. 2017. https://doi.org/10.1007/s12517-017-2918-z
dc.relation/*ref*/M. A. Horaira; M. S. Ahmed; M. H. Kabir; M. N. H. Mollah; M. A. Rahman Shah, “Colon Cancer Prediction from Gene Expression Profiles Using Kernel Based Support Vector Machine,” in 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Feb. 2018, pp. 1–4. https://ieeexplore.ieee.org/document/8465636
dc.relation/*ref*/V. Wan; W. M. Campbell, “Support vector machines for speaker verification and identification,” in Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No.00TH8501), vol. 2, pp. 775–784. https://doi.org/10.1109/NNSP.2000.890157
dc.relation/*ref*/V. Hooshmand Moghaddam; J. Hamidzadeh, “New Hermite orthogonal polynomial kernel and combined kernels in Support Vector Machine classifier,” Pattern Recognit., vol. 60, pp. 921–935, Dec. 2016. https://doi.org/10.1016/j.patcog.2016.07.004
dc.relation/*ref*/X. Huang; Q.-S. Xu; Y.-H. Yun; J.-H. Huang; Y.-Z. Liang, “Weighted variable kernel support vector machine classifier for metabolomics data analysis,” Chemom. Intell. Lab. Syst., vol. 146, pp. 365–370, Aug. 2015. https://doi.org/10.1016/j.chemolab.2015.06.009
dc.relation/*ref*/D. A. López-Sarmiento; H. C. Manta-Caro; N. E. Vera-Parra, “Clasificador basado en una máquina de vectores de soporte de mínimos cuadrados frente a un clasificador por regresión logística ante el reconocimiento de dígitos numéricos,” TecnoLógicas, no. 31, pp. 37-51, Nov. 2011. https://doi.org/10.22430/22565337.99
dc.relation/*ref*/L. A. Muñoz-Bedoya; L. E. Mendoza; H. J. Velandia-Villamizar, “Segmentación de Imágenes de Resonancia Magnética IRM utilizando LS-SVM y Análisis Multiresolución Wavelet,” TecnoLógicas, pp. 681-693, Nov. 2013. https://doi.org/10.22430/22565337.381
dc.relation/*ref*/M. Moon; K. Nakai, “Stable feature selection based on the ensemble L 1 -norm support vector machine for biomarker discovery,” BMC Genomics, vol. 17, no. s13, Dec. 2016. https://doi.org/10.1186/s12864-016-3320-z
dc.rightsDerechos de autor 2021 TecnoLógicases-ES
dc.sourceTecnoLógicas; Vol. 24 No. 52 (2021); e2088en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 52 (2021); e2088es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectOrganochlorinesen-US
dc.subjectRecursive feature eliminationen-US
dc.subjectMultivariate statistical methodsen-US
dc.subjectSupport vector machinesen-US
dc.subjectMetabolomicsen-US
dc.subjectOrganocloradoses-ES
dc.subjectEliminación Recursiva de Característicases-ES
dc.subjectEstadística Multivariadaes-ES
dc.subjectMáquinas de Vectores de Soportees-ES
dc.subjectMetabolómicaes-ES
dc.titleSupport Vector Machines for Biomarkers Detection in in vitro and in vivo Experiments of Organochlorines Exposureen-US
dc.titleMáquinas de vectores de soporte para detección de biomarcadores en experimentos in vitro e in vivo de exposición a organocloradoses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
revistatecnologicas_2088-MPUB-VF.pdf
Tamaño:
754.65 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
ojsitm_344268257011.epub
Tamaño:
1.25 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
ojsitm_344268257011.xml
Tamaño:
83.46 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2248.html
Tamaño:
124.29 KB
Formato:
Hypertext Markup Language