Comparative Study of Mathematical Models to Predict the Calorific Value of Mexican Agricultural Wastes

dc.creatorRodríguez-Romero, Luis Antonio
dc.creatorGutiérrez-Antonio, Claudia
dc.creatorGarcía-Trejo, Juan Fernando
dc.creatorFeregrino-Pérez, Ana Angélica
dc.date2022-02-28
dc.date.accessioned2025-10-01T23:52:45Z
dc.descriptionAgricultural residues represent a pollution problem because they are inadequately disposed of and high volumes of these wastes are generated. Therefore, revaluating them to produce biofuels is attractive, but, for that purpose, their calorific value should be established. Some mathematical models reported in the literature to predict calorific value have considered elemental, structural, and proximal analyses, the latter being the least expensive type. This article compares different mathematical models that have been used to predict calorific value based on elemental analysis in order to 1) evaluate agricultural residues from Mexico (bean straw, wheat straw, rice husks, and coffee husks) and other residues reported in the literature (coconut fibers and husks, garden waste, canola hulls, Jatropha curcas husks, and wheat straw) and 2) determine if the existing models work adequately for Mexican biomasses. Thus, Mexican biomasses were characterized using proximal analyses, and the calorific value of all the biomasses was estimated employing previously reported linear mathematical models. The results, which were compared with experimental values, show that the coefficients of determination of the existing mathematical models are low, particularly when Mexican biomass data are used. The best model to predict the calorific value of Mexican agricultural residues (R2 = 0.72) considers only the content of volatile matter and fixed carbon, in addition to a weak functionality of the ash content. Consequently, mathematical models should be proposed specifically for Mexican biomass.en-US
dc.descriptionLos residuos agrícolas representan un problema de contaminación, dada su inadecuada disposición y elevados volúmenes generados. Por ello, su revalorización para producir biocombustibles es atractiva, para lo cual se requiere conocer su poder calorífico. Se han reportado modelos matemáticos para predecir el poder calorífico considerando análisis elementales, estructurales y proximales, siendo éstos últimos los de menor costo. Por ello, el presente trabajo realizó un estudio comparativo de los modelos matemáticos que predicen el poder calorífico con base en análisis elementales; dicho estudio considera: 1) residuos agrícolas procedentes de México (paja de frijol, paja de trigo, cascarilla de arroz, cascabillo de café), y 2) residuos reportados en la literatura (fibras y cáscaras de coco, residuos de jardín, cáscaras de canola, cáscaras de Jatropha curcas, paja de trigo), con el objetivo de determinar si los modelos existentes funcionan adecuadamente para las biomasas mexicanas. Para ello, las biomasas mexicanas son caracterizadas mediante análisis proximales; por otra parte, se estima el poder calorífico de todas las biomasas con modelos matemáticos lineales previamente reportados, y los resultados se comparan con los valores experimentales. Los resultados muestran que los coeficientes de determinación de los modelos matemáticos existentes son bajos, en particular al emplear datos de biomasas mexicanas. El mejor modelo para predecir el poder calorífico en residuos agrícolas mexicanos (R2 = 0.72) considera solamente el contenido de materia volátil y de carbono fijo, así como una débil funcionalidad del contenido de cenizas. Por ello, es necesario proponer modelos matemáticos específicamente para las biomasas mexicanas.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2142
dc.identifier10.22430/22565337.2142
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7805
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2142/2319
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2142/2320
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2142/2321
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2142/2322
dc.relation/*ref*/N. El Basam, “Restructuring future energy generation and supply”, en Distributed Renewable Energies for Off-Grid Communities, Elsevier, 2021, pp. 27–37. https://doi.org/10.1016/B978-0-12-821605-7.00029-5
dc.relation/*ref*/O. Ellabban; H. Abu-Rub; F. Blaabjerg, “Renewable energy resources: Current status, future prospects and their enabling technology”, Renew. Sustain. Energy Rev., vol. 39, pp. 748–764, Nov. 2014. https://doi.org/10.1016/j.rser.2014.07.113
dc.relation/*ref*/J. C. Alberizzi; M. Rossi; M. Renzi, “A MILP algorithm for the optimal sizing of an off-grid hybrid renewable energy system in South Tyrol”, Energy Reports, vol. 6, Sup. 1, pp. 21–26, Feb. 2020. https://doi.org/10.1016/j.egyr.2019.08.012
dc.relation/*ref*/L. E. Ordoñez-Santos; J. Esparza-Estrada; P. Vanegas-Mahecha, “Potencial agroindustrial del epicarpio de mandarina como alternativa de colorante natural en pan”, TecnoLógicas, vol. 23, nro. 48, pp. 17-29, May. 2020. https://doi.org/10.22430/22565337.1465
dc.relation/*ref*/Y. A. Villada-Villada; A. Hormaza-Anaguano; N. Casis, “Uso de la cascarilla de arroz para la remoción de azul de metileno en columnas de lecho empacado”, TecnoLógicas, vol. 17, no. 33, pp. 43-54, Aug. 2014. https://doi.org/10.22430/22565337.545
dc.relation/*ref*/V. M. Ospina-Guarín; R. Buitrago-Sierra; D. P. López-López, “Preparación y caracterización de carbón activado a partir de torta de higuerilla”, TecnoLógicas, vol. 17, no. 32, pp. 75-84, Jan. 2014. https://doi.org/10.22430/22565337.207
dc.relation/*ref*/International Renewable Energy Agency, (IRENA). 2020. 05 Recycle:Bioenergy https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Sep/CC_05_Recycle_bioenergy_2020.pdf
dc.relation/*ref*/M. Erol; H. Haykiri-Acma; S. Küçükbayrak, “Calorific value estimation of biomass from their proximate analyses data”, Renew. Energy, vol. 35, no. 1, pp. 170–173, Jan. 2010. https://doi.org/10.1016/j.renene.2009.05.008
dc.relation/*ref*/ISO 18125. Solid biofuels-Determination of calorific value. 2017. https://www.iso.org/standard/61517.html
dc.relation/*ref*/C. Sheng; J. L. T. Azevedo, “Estimating the higher heating value of biomass fuels from basic analysis data”, Biomass Bioenerg, vol. 28, no. 5, pp. 499–507, May 2005. https://doi.org/10.1016/j.biombioe.2004.11.008
dc.relation/*ref*/H. Haykiri-Acma; M. Erol; S. Kucukbayrak, “Estimation of heating values of biomass”, In 2006 RWorld renewable energy congress IX Florence, Italy, pp. 19-25, 2006, Elsevier; ISBN: 0301870372
dc.relation/*ref*/C.-Y. Yin, “Prediction of higher heating values of biomass from proximate and ultimate analyses”, Fuel, vol. 90, no. 3, pp. 1128–1132, Mar. 2011. https://doi.org/10.1016/j.fuel.2010.11.031
dc.relation/*ref*/J. Parikh; S. A. Channiwala; G. K. Ghosal, “A correlation for calculating HHV from proximate analysis of solid fuels”, Fuel, vol. 84, no. 5, pp. 487–494, Mar. 2005. https://doi.org/10.1016/j.fuel.2004.10.010
dc.relation/*ref*/A. J. Callejón-Ferre; B. Velázquez-Martí; J. A. López-Martínez; F. Manzano-Agugliaro, “Greenhouse crop residues: Energy potential and models for the prediction of their higher heating value”, Renew. Sustain. Energy Rev., vol. 15, no. 2, pp. 948–955, Feb. 2011. https://doi.org/10.1016/j.rser.2010.11.012
dc.relation/*ref*/C. Huang; L. Han; X. Liu; Z. Yang, “Models Predicting Calorific Value of Straw from the Ash Content”, Int. J. Green Energy, vol. 5, no. 6, pp. 533–539, Dec. 2008. https://doi.org/10.1080/15435070802498507
dc.relation/*ref*/C. D. Everard; K. P. McDonnell; C. C. Fagan, “Prediction of biomass gross calorific values using visible and near infrared spectroscopy”, Biomass and Bioenergy, vol. 45, pp. 203–211, Oct. 2012. https://doi.org/10.1016/j.biombioe.2012.06.007
dc.relation/*ref*/J. Skvaril; K. Kyprianidis; A. Avelin; M. Odlare; E. Dahlquist, “Fast Determination of Fuel Properties in Solid Biofuel Mixtures by Near Infrared Spectroscopy”, Energy Procedia, vol. 105, pp. 1309–1317, May 2017. https://doi.org/10.1016/j.egypro.2017.03.476
dc.relation/*ref*/J. M. Vargas-Moreno; A. J. Callejón-Ferre; J. Pérez-Alonso; B. Velázquez-Martí, “A review of the mathematical models for predicting the heating value of biomass materials”, Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3065–3083, Jun. 2012. https://doi.org/10.1016/j.rser.2012.02.054
dc.relation/*ref*/A. Özyuğuran; S. Yaman, “Prediction of Calorific Value of Biomass from Proximate Analysis”, Energy Procedia, vol. 107, pp. 130–136, Feb. 2017. https://doi.org/10.1016/j.egypro.2016.12.149
dc.relation/*ref*/R. Krishnan; L. Hauchhum; R. Gupta; S. Pattanayak, “Prediction of Equations for Higher Heating Values of Biomass Using Proximate and Ultimate Analysis”, in 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE), 2018, pp. 1–5. https://doi.org/10.1109/EPETSG.2018.8658984
dc.relation/*ref*/Association of Analytical Communities (AOAC), Official Methods of Analysis of AOAC International, Seventeen, AOAC International, Gaithersburg, 2002. http://www.eoma.aoac.org/
dc.relation/*ref*/I. M. Ríos-Badrán; I. Luzardo-Ocampo; J. F. García-Trejo; J. Santos-Cruz; C. Gutiérrez-Antonio, “Production and characterization of fuel pellets from rice husk and wheat straw”, Renew. Energy, vol. 145, pp. 500–507, Jan. 2020. https://doi.org/10.1016/j.renene.2019.06.048
dc.relation/*ref*/ASTM D1102-84, Standard Test Method for Ash in Wood, ASTM International, , 2007. https://doi.org/10.1520/D1102-84R07
dc.relation/*ref*/Hach, Water Analysis Handbook, Loveland, CO, USA, 2015. First. https://www.hach.com/wah
dc.relation/*ref*/T. Cordero; F. Marquez; J. Rodriguez-Mirasol; J. J. Rodriguez, “Predicting heating values of lignocellulosics and carbonaceous materials from proximate analysis”, Fuel, vol. 80, no. 11, pp. 1567–1571, Sep. 2001. https://doi.org/10.1016/S0016-2361(01)00034-5
dc.relation/*ref*/Z. Liu; A. Quek; R. Balasubramanian, “Preparation and characterization of fuel pellets from woody biomass, agro-residues and their corresponding hydrochars”, Appl. Energy, vol. 113, pp. 1315–1322, Jan. 2014. https://doi.org/10.1016/j.apenergy.2013.08.087
dc.relation/*ref*/P. Pradhan; A. Arora; S. M. Mahajani, “Pilot scale evaluation of fuel pellets production from garden waste biomass”, Energy Sustain. Dev., vol. 43, pp. 1–14, Apr. 2018. https://doi.org/10.1016/j.esd.2017.11.005
dc.relation/*ref*/R. Azargohar et al., “Effects of bio-additives on the physicochemical properties and mechanical behavior of canola hull fuel pellets,” Renew. Energy, vol. 132, pp. 296–307, Mar. 2019. https://doi.org/10.1016/j.renene.2018.08.003
dc.relation/*ref*/V. Ramírez; J. Martí-Herrero; M. Romero; D. Rivadeneira, “Energy use of Jatropha oil extraction wastes: Pellets from biochar and Jatropha shell blends”, J. Clean. Prod., vol. 215, pp. 1095–1102, Apr. 2019. https://doi.org/10.1016/j.jclepro.2019.01.132
dc.relation/*ref*/L. Azócar; N. Hermosilla; A. Gay, S. Rocha; J. Díaz; P. Jara, “Brown pellet production using wheat straw from southern cities in Chile”, Fuel, vol. 237, pp. 823–832, Feb. 2019. https://doi.org/10.1016/j.fuel.2018.09.039
dc.relation/*ref*/M. N. Cahyanti; T. R. K. C. Doddapaneni; T. Kikas, “Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements”, Bioresour. Technol., vol. 301, p. 122737, Apr. 2020. https://doi.org/10.1016/j.biortech.2020.122737
dc.relation/*ref*/D. Trejo‐Zamudio; C. Gutiérrez‐Antonio; J. F. García‐Trejo; A. A. Feregrino‐Pérez; M. Toledano‐Ayala, “Production of fuel pellets from bean crop residues ( Phaseolus vulgaris )”, IET Renew. Power Gener., Dec. 2021. https://doi.org/10.1049/rpg2.12365
dc.relation/*ref*/M. T. Miranda; F. J. Sepúlveda; J. I. Arranz; I. Montero; C. V. Rojas, “Physical-energy characterization of microalgae Scenedesmus and experimental pellets”, Fuel, vol. 226, pp. 121–126, Aug. 2018. https://doi.org/10.1016/j.fuel.2018.03.097
dc.relation/*ref*/M. V. Gil; P. Oulego; M. D. Casal; C. Pevida, J. J. Pis; F. Rubiera, “Mechanical durability and combustion characteristics of pellets from biomass blends”, Bioresour. Technol., vol. 101, no. 22, pp. 8859–8867, Nov. 2010. https://doi.org/10.1016/j.biortech.2010.06.062
dc.relation/*ref*/M. U. Hossain; S.-Y. Leu; C. S. Poon, “Sustainability analysis of pelletized bio-fuel derived from recycled wood product wastes in Hong Kong”, J. Clean. Prod., vol. 113, pp. 400–410, Feb. 2016. https://doi.org/10.1016/j.jclepro.2015.11.069
dc.relation/*ref*/P. Grammelis; N. Margaritis; D. S. Kourkoumpas, 4.27 Pyrolysis Energy Conversion Systems, en Comprehensive Energy Systems, Elsevier, Vol. 4, p. 1065-1106, 2018. http://144.76.89.142:8081/science/article/pii/B9780128095973004454
dc.relation/*ref*/S. V. Vassilev; D. Baxter; L. K. Andersen; C. G. Vassileva, “An overview of the chemical composition of biomass”, Fuel, vol. 89, no. 5, pp. 913–933, May 2010. https://doi.org/10.1016/j.fuel.2009.10.022
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.sourceTecnoLógicas; Vol. 25 No. 53 (2022); e2142en-US
dc.sourceTecnoLógicas; Vol. 25 Núm. 53 (2022); e2142es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectRenewable energy sourcesen-US
dc.subjectbiomassen-US
dc.subjectcalorific valueen-US
dc.subjectproximal analysisen-US
dc.subjectpredictive modelen-US
dc.subjectFuentes de energía renovablees-ES
dc.subjectbiomasaes-ES
dc.subjectpoder caloríficoes-ES
dc.subjectanálisis proximales-ES
dc.subjectmodelo predictivoes-ES
dc.titleComparative Study of Mathematical Models to Predict the Calorific Value of Mexican Agricultural Wastesen-US
dc.titleEstudio comparativo de modelos matemáticos para predecir el poder calorífico de residuos agrícolas mexicanoses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
revistatecnologicas_2142-MPUB-VF.pdf
Tamaño:
832.23 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
ojsitm_344270031001.epub
Tamaño:
645.76 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
ojsitm_344270031001.xml
Tamaño:
140.24 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2322.html
Tamaño:
183.11 KB
Formato:
Hypertext Markup Language