Utilization of Glass Waste as a Partial Replacement for Fine Aggregate in Concrete Mixtures

dc.creatorValencia-Saavedra, William Gustavo
dc.creatorGómez-Rojas, Carolina
dc.creatorRevelo-Restrepo, Ana María
dc.creatorMejía-de-Gutiérrez, Ruby
dc.date2025-07-28
dc.date.accessioned2025-10-01T23:53:16Z
dc.descriptionPopulation growth and industrial growth have increased the demand for infrastructure and housing, increasing concrete consumption and its environmental impact. This has motivated the search for sustainable alternatives to partially or completely replace raw materials used in concrete. In this context, the objective of this study was to evaluate the use of waste glass (WG) as a partial substitute for natural fine aggregate (NFA) in the production of concrete and to validate its application in a structural construction element. The WG aggregate was obtained from the crushing and grinding of bottles; its fineness and absorption modulus were 3.35 and 0.2%, respectively. The methodology employed consisted of evaluating the physical, mechanical, and thermal properties of concrete mixtures with WG replaced by WG in proportions of up to 40%. In addition, the performance of the concrete was studied at high temperatures (up to 900°C) and blocks were produced. The results obtained demonstrated that WG improves the concrete workability by up to 69%, reduces absorption by 23%, and porosity by 19%. Furthermore, the thermal conductivity and diffusivity properties decreased by up to 19% when using 40% RV. The concrete showed improved performance under direct thermal exposure, with no significant impact on compressive strength for replacements of up to 30%. However, a reduction of up to 20% in flexural strength was observed. Finally, it is concluded that concretes with up to 40% RV can be used in the manufacture of blocks, which can be classified as structural blocks of high category according to the Colombian Technical Standard NTC 4026. This application is considered a viable solution for the recovery of glass waste under a circular economy approach.en-US
dc.descriptionEl aumento de la población y el crecimiento industrial han incrementado la demanda de infraestructura y vivienda, elevando el consumo de concreto y su impacto ambiental. Esto ha motivado la búsqueda de alternativas sostenibles para reemplazar parcial o totalmente las materias primas del concreto. En este contexto, el objetivo del presente estudio fue evaluar el uso de residuos de vidrio (RV) como sustituto parcial del agregado fino natural (AFN) en la producción de concreto, y validar su aplicación en un elemento constructivo de carácter estructural. El agregado de RV se obtuvo a partir de trituración y molienda de botellas, su módulo de finura y absorción fueron 3,35 y 0,2 %, respectivamente. La metodología empleada consistió en evaluar las propiedades físicas, mecánicas y térmicas de mezclas de concreto con reemplazo de AFN por RV en proporciones de hasta 40 %. Complementariamente se estudió el desempeño del concreto a altas temperaturas (hasta 900°C) y se produjeron bloques. Los resultados obtenidos demostraron que el RV mejora la trabajabilidad del concreto hasta en un 69 %, reduce la absorción en un 23 % y la porosidad en un 19 %. Además, las propiedades de conductividad y difusividad térmica disminuyeron hasta un 19 % al emplear un 40 % de RV. El concreto mostró un mejor desempeño frente a exposición térmica directa sin afectación significativa en la resistencia a compresión para reemplazos de hasta 30 %. No obstante, se observó una reducción de hasta el 20 % en la resistencia a flexión. Finalmente, se concluye que los concretos con hasta 40 % de RV pueden ser empleados en la fabricación de bloques, los cuales pueden ser clasificados como estructurales de categoría alta acorde con la Norma Técnica Colombiana NTC 4026. Esta aplicación es considerada como una solución viable para la valorización de residuos de vidrio bajo un enfoque de economía circular.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formatapplication/zip
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3317
dc.identifier10.22430/22565337.3317
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7937
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3317/3708
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3317/3780
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3317/3781
dc.relation/*ref*/G. Habert et al., “Environmental impacts and decarbonization strategies in the cement and concrete industries,” Nat. Rev. Earth Environ., vol. 1, no. 11, pp. 559-573, Nov. 2020. https://doi.org/10.1038/s43017-020-0093-3
dc.relation/*ref*/S. Qaidi et al., “Concrete Containing Waste Glass as an Environmentally Friendly Aggregate: A Review on Fresh and Mechanical Characteristics,” Materials, vol. 15, no. 18, p. 6222, Jan. 2022. https://doi.org/10.3390/ma15186222
dc.relation/*ref*/I. Mallum, A. R. Mohd.Sam, N. H. A. Shukor Lim, and N. Omolayo, “Sustainable Utilization of Waste Glass in Concrete: A Review,” Silicon, vol. 14, no. 7, pp. 3199-3214, May. 2022. https://doi.org/10.1007/s12633-021-01152-x
dc.relation/*ref*/B. Geeta, and A. Saleem, “The Use of Natural Organic Fibres in Cement Concrete: A Review,” Inter. Res. J. Engin. Technol., vol. 8, no. 6, pp. 950-952, Jun. 2021. https://www.academia.edu/download/68643198/IRJET_V8I6173.pdf
dc.relation/*ref*/B. Geeta, and A. Saleem, “Concrete Using Agricultural Waste and Egg Shell Powder Waste: A Review,” Inter. Res. J. Engin. Technol., vol. 8, no. 6, pp. 947-949, Jun. 2021. https://www.academia.edu/download/68643200/IRJET_V8I6172.pdf
dc.relation/*ref*/SSPD, “Informe Nacional de Disposición Final de Residuos Sólidos 2021,” Superintendencia de Servicios Públicos Domiciliarios, 2021. [Online]. Available: https://www.superservicios.gov.co/sites/default/files/inline-files/Informe-Nacional-de-Disposicion-Final-de-Residuos-Solidos.pdf.pdf
dc.relation/*ref*/Ministerio de Ambiente, “Hoy no se habla de basura, sino de residuos que son insumos para productos: Minambiente,” minambiente.gov.co, Accessed: Aug. 6, 2024. [Online]. Available: https://www.minambiente.gov.co/hoy-no-se-habla-de-basura-sino-de-residuos-que-son-insumos-para-productos-minambiente/
dc.relation/*ref*/H. Eu et al., “Alkali-Silica Reaction and Residual Mechanical Properties of High-Strength Mortar Containing Waste Glass Fine Aggregate and Supplementary Cementitious Materials,” Int. J. Concr. Struct. Mater., vol. 18, no. 1, p. 69, Oct. 2024. https://doi.org/10.1186/s40069-024-00711-x
dc.relation/*ref*/S. Abdallah, and M. Fan, “Characteristics of concrete with waste glass as fine aggregate replacement,” Int. J. Eng. Tech. Res., vol. 2, no. 6, pp. 11-17, Jun. 2014. https://www.erpublication.org/published_paper/IJETR021927.pdf
dc.relation/*ref*/Md. N. Newaz Khan, and P. Kumar Sarker, “Effect of waste glass fine aggregate on the strength, durability and high temperature resistance of alkali-activated fly ash and GGBFS blended mortar,” Constr. Build. Mater., vol. 263, p. 120177, Dec. 2020. https://www.sciencedirect.com/science/article/abs/pii/S0950061820321826
dc.relation/*ref*/S. Arivalagan, and V. S. Sethuraman, “Experimental study on the mechanical properties of concrete by partial replacement of glass powder as fine aggregate: An environmental friendly approach,” Mater. Today Proc., vol. 45, Part 7, pp. 6035-6041, Jan. 2021. https://doi.org/10.1016/j.matpr.2020.09.722
dc.relation/*ref*/N. Tamanna, R. Tuladhar, and N. Sivakugan, “Performance of recycled waste glass sand as partial replacement of sand in concrete,” Constr. Build. Mater., vol. 239, p. 117804, Apr. 2020. https://doi.org/10.1016/j.conbuildmat.2019.117804
dc.relation/*ref*/A. M. Rashad, “Recycled waste glass as fine aggregate replacement in cementitious materials based on Portland cement,” Constr. Build. Mater., vol. 72, pp. 340-357, Dec. 2014. https://doi.org/10.1016/j.conbuildmat.2014.08.092
dc.relation/*ref*/B. V. Kavyateja, P. Narasimha Reddy, and U. Vamsi Mohan, “Study of strength characteristics of crushed glass used as fine aggregate in concrete,” Int. J. Res. Eng. Technol., vol. 5, no. 2, pp. 157-160, Feb. 2016. https://doi.org/10.15623/ijret.2016.0502027
dc.relation/*ref*/I. Herrera Briñez, “Por extracción ilegal de arena del río cauca, cuatro personas fueron capturadas,” Corporación Autónoma Regional del Valle del Cauca, 2025. [Online]. Available: https://www.cvc.gov.co/carousel/1636-ilegal-extra-2015?utm_source=chatgpt.com
dc.relation/*ref*/S. Can Bostanci, M. Limbachiya, and H. Kew, “Portland-composite and composite cement concretes made with coarse recycled and recycled glass sand aggregates: Engineering and durability properties,” Constr. Build. Mater., vol. 128, pp. 324-340, Dec. 2016. https://doi.org/10.1016/j.conbuildmat.2016.10.095
dc.relation/*ref*/A. Hajimohammadi, T. Ngo, and A. Kashani, “Glass waste versus sand as aggregates: The characteristics of the evolving geopolymer binders,” J. Clean. Prod., vol. 193, pp. 593-603, Aug. 2018. https://doi.org/10.1016/j.jclepro.2018.05.086
dc.relation/*ref*/M. Seddik Meddah, “Use of Waste Window Glass as Substitute of Natural Sand in Concrete Production,” IOP Conf. Ser. Mater. Sci. Eng., vol. 603, no. 3, p. 032011, Sep. 2019. https://doi.org/10.1088/1757-899X/603/3/032011
dc.relation/*ref*/K. Borek, P. Czapik, and R. Dachowski, “Recycled Glass as a Substitute for Quartz Sand in Silicate Products,” Materials, vol. 13, no. 5, p. 1030, Feb. 2020. https://doi.org/10.3390/ma13051030
dc.relation/*ref*/CH. Srinivas, M. Srivalli, P. Upendra, E. Ahmad, and M. Kumar, “Utilization of Recycled Glass Waste as Partial Replacement of Fine Aggregate in Concrete,” Inter. J. Sci. Res. Eng. Manag., vol. 9, Mar. 2025. https://doi.org/10.55041/IJSREM42825
dc.relation/*ref*/L. Si Ho, and T. -P. Huynh, “Recycled waste medical glass as a fine aggregate replacement in low environmental impact concrete: Effects on long-term strength and durability performance,” J. Clean. Prod., vol. 368, p. 133144, Sep. 2022. https://doi.org/10.1016/j.jclepro.2022.133144
dc.relation/*ref*/O. D. Olajide, M. R. Nokken, and L. F. M. Sánchez, “Alkali–Silica Reactions: Literature Review on the Influence of Moisture and Temperature and the Knowledge Gap,” Materials, vol. 17, no. 1, p. 10, Dec. 2023. https://doi.org/10.3390/ma17010010
dc.relation/*ref*/M. Ranger, M. Tange Hasholt, J. Lindgård, and R. A. Barbosa, “Laboratory and field investigations of alkali-silica reaction prevention by supplementary cementitious materials: Influence of the free alkali loading,” Constr. Build. Mater., vol. 442, p. 137599, Sep. 2024. https://doi.org/10.1016/j.conbuildmat.2024.137599
dc.relation/*ref*/O. Omar, H. Al Hatailah, and A. Nanni, “Advances and Perspectives in Alkali–Silica Reaction (ASR) Testing: A Critical Review of Reactivity and Mitigation Assessments,” Designs, vol. 9, no. 3, p. 71, Jun. 2025. https://doi.org/10.3390/designs9030071
dc.relation/*ref*/G. Ke, W. Li, R. Li, Y. Li, and G. Wang, “Mitigation Effect of Waste Glass Powders on Alkali–Silica Reaction (ASR) Expansion in Cementitious Composite,” Int. J. Concr. Struct. Mater., vol. 12, no. 1, p. 67, Nov. 2018. https://doi.org/10.1186/s40069-018-0299-7
dc.relation/*ref*/A. Hasan Mahmood, S. Afroz, A. Kashani, T. Kim, and S. J. Foster, “The efficiency of recycled glass powder in mitigating the alkali-silica reaction induced by recycled glass aggregate in cementitious mortars,” Mater. Struct., vol. 55, no. 6, pp. 1-20, Jul. 2022. https://doi.org/10.1617/s11527-022-01989-7
dc.relation/*ref*/S. Li et al., “Properties of concrete with waste glass after exposure to elevated temperatures,” J. Build. Eng., vol. 57, p. 104822, Oct. 2022. https://doi.org/10.1016/j.jobe.2022.104822
dc.relation/*ref*/E. Emam Ali, and S. H. Al-Tersawy, “Recycled glass as a partial replacement for fine aggregate in self compacting concrete,” Constr. Build. Mater., vol. 35, pp. 785-791, Oct. 2012. https://doi.org/10.1016/j.conbuildmat.2012.04.117
dc.relation/*ref*/T. Liu, H. Wei, D. Zou, A. Zhou, and H. Jian, “Utilization of waste cathode ray tube funnel glass for ultra-high performance concrete,” J. Clean. Prod., vol. 249, p. 119333, Mar. 2020. https://doi.org/10.1016/j.jclepro.2019.119333
dc.relation/*ref*/N. Arabi, H. Meftah, H. Amara, O. Kebaïli, and L. Berredjem, “Valorization of recycled materials in development of self-compacting concrete: Mixing recycled concrete aggregates – Windshield waste glass aggregates,” Constr. Build. Mater., vol. 209, pp. 364-376, Jun. 2019. https://doi.org/10.1016/j.conbuildmat.2019.03.024
dc.relation/*ref*/Z. Liu, C. Shi, Q. Shi, X. Tan, and W. Meng, “Recycling waste glass aggregate in concrete: Mitigation of alkali-silica reaction (ASR) by carbonation curing,” J. Clean. Prod., vol. 370, p. 133545, Oct. 2022. https://doi.org/10.1016/j.jclepro.2022.133545
dc.relation/*ref*/P. Rajagopalan, V. Balaji, N. Unnikrishnan, T. Jainul Haq, and P. Bhuvaneshwari, “Study of Bond Characteristics of Reinforced Waste Glass Aggregate Concrete,” IOP Conf. Ser. Earth Environ. Sci., vol. 80, no. 1, p. 012006, Jul. 2017. https://doi.org./10.1088/1755-1315/80/1/012006
dc.relation/*ref*/A. İ. Çelik et al., “Mechanical Behavior of Crushed Waste Glass as Replacement of Aggregates,” Materials, vol. 15, no. 22, p. 8093, Jan. 2022. https://doi.org/10.3390/ma15228093
dc.relation/*ref*/Y. Jiao, Y. Zhang, M. Guo, L. Zhang, H. Ning, and S. Liu, “Mechanical and fracture properties of ultra-high performance concrete (UHPC) containing waste glass sand as partial replacement material,” J. Clean. Prod., vol. 277, p. 123501, Dec. 2020. https://doi.org/10.1016/j.jclepro.2020.123501
dc.relation/*ref*/E. Y. Mundaca Zavaleta, “Mejoramiento de propiedades físico-mecánicas del concreto f’c = 210 kg/cm2 con adición de vidrio y caucho reciclado, Lima – 2022,” Tesis de grado, Universidad César Vallejo, Lima, Perú, 2022. https://repositorio.ucv.edu.pe/handle/20.500.12692/112989
dc.relation/*ref*/T. Drzymała, B. Zegardło, and P. Tofilo, “Properties of Concrete Containing Recycled Glass Aggregates Produced of Exploded Lighting Materials,” Materials, vol. 13, no. 1, p. 226, Jan. 2020. https://doi.org/10.3390/ma13010226
dc.relation/*ref*/A. W. Otunyo, and B. N. Okechukwu, “Performance of concrete with partial replacement of fine aggregates with crushed waste glass,” Niger. J. Technol., vol. 36, no. 2, pp. 403-410, Apr. 2017. https://www.nijotech.com/index.php/nijotech/article/view/1288
dc.relation/*ref*/T. -C. Ling and C. -S. Poon, “Feasible use of recycled CRT funnel glass as heavyweight fine aggregate in barite concrete,” J. Clean. Prod., vol. 33, pp. 42-49, Sep. 2012. https://doi.org/10.1016/j.jclepro.2012.05.003
dc.relation/*ref*/P. C. Hewlett, and M. Liska, Lea’s Chemistry of Cement and Concrete, 5th ed, Oxford, U.K.: Butterworth-Heinemann, Elsevier, 2019. https://doi.org/10.1016/C2013-0-19325-7
dc.relation/*ref*/P. Sikora, E. Horszczaruk, K. Skoczylas, and T. Rucinska, “Thermal properties of cement mortars containing waste glass aggregate and nanosilica,” Procedia Eng., vol. 196, pp. 159-166, Jun. 2017. https://doi.org/10.1016/j.proeng.2017.07.186
dc.relation/*ref*/B. Wen, H. Wang, G. Gao, L. Zhang, Y. Kang, and F. Zhang, “The effect of waste glass incorporation on the high-temperature resistance of cement-based concrete,” Arch. Civ. Mech. Eng., vol. 25, no. 156, pp. 1-33, May. 2025. https://doi.org/10.1007/s43452-025-01206-6
dc.relation/*ref*/Y. S. Al Rjoub, and M. F. Tamimi, “Heat transfer and thermal shock of recycled glass concrete,” Mag. Civ. Engin., vol. 91, no. 7, pp. 27-38, 2019. https://engstroy.spbstu.ru/userfiles/files/2019/7(91)/03.pdf
dc.relation/*ref*/G. A. Khoury, “Compressive strength of concrete at high temperatures: a reassessment,” Mag. Concr. Res., vol. 44, no. 161, pp. 291-309, Dec. 2015. https://doi.org/10.1680/macr.1992.44.161.291
dc.relation/*ref*/L. Tung-Chai, P. Chi-Sun, and K. Shi-Cong, “Influence of recycled glass content and curing conditions on the properties of self-compacting concrete after exposure to elevated temperatures,” Cem. Concr. Compos., vol. 34, no. 2, pp. 265-272, Feb. 2012. https://doi.org/10.1016/j.cemconcomp.2011.08.010
dc.relation/*ref*/M. J. Terro, “Properties of concrete made with recycled crushed glass at elevated temperatures,” Build. Environ., vol. 41, no. 5, pp. 633-639, May 2006. https://doi.org/10.1016/j.buildenv.2005.02.018
dc.relation/*ref*/Z. Pan, Z. Tao, T. Murphy, and R. Wuhrer, “High temperature performance of mortars containing fine glass powders,” J. Clean. Prod., vol. 162, pp. 16-26, Sep. 2017. https://doi.org/10.1016/j.jclepro.2017.06.003
dc.relation/*ref*/S. Yang, T. -C. Ling, H. Cui, and C. Sun Poon, “Influence of particle size of glass aggregates on the high temperature properties of dry-mix concrete blocks,” Constr. Build. Mater., vol. 209, pp. 522-531, Jun. 2019. https://doi.org/10.1016/j.conbuildmat.2019.03.131
dc.relation/*ref*/T. -C. Ling, C. -S. Poon, and H. -W. Wong, “Management and recycling of waste glass in concrete products: Current situations in Hong Kong,” Resour. Conserv. Recycl., vol. 70, pp. 25-31, Jan. 2013. https://doi.org/10.1016/j.resconrec.2012.10.006
dc.relation/*ref*/
dc.rightsDerechos de autor 2025 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 28 No. 63 (2025); e3317en-US
dc.sourceTecnoLógicas; Vol. 28 Núm. 63 (2025); e3317es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectaprovechamiento de residuoses-ES
dc.subjectbloques de concretoes-ES
dc.subjecteconomía circulares-ES
dc.subjectpropiedades térmicases-ES
dc.subjectvidrio reciclado en la construcciónes-ES
dc.subjectwaste utilizationen-US
dc.subjectconcrete blocksen-US
dc.subjectcircular economyen-US
dc.subjectthermal propertiesen-US
dc.subjectrecycled glass in constructionen-US
dc.titleUtilization of Glass Waste as a Partial Replacement for Fine Aggregate in Concrete Mixturesen-US
dc.titleAprovechamiento de residuo de vidrio como reemplazo parcial del agregado fino en mezclas de concretoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos