Steganographic Cryptosystem Based on the Use of Chaos Theory and Cellular Automata
| dc.creator | Arias-Cárdenas, Marlon | |
| dc.creator | Alvarado-Nieto, Deicy | |
| dc.creator | Amaya-Barrera, Isabel | |
| dc.date | 2024-11-12 | |
| dc.date.accessioned | 2025-10-01T23:53:14Z | |
| dc.description | The exchange of large amounts of information through public channels has become an everyday occurrence, a situation that generates great risks in the case of possible cyber-attacks and motivates the academic and scientific community to develop new robust security schemes. The objective of the research was to use mathematical and artificial intelligence tools to propose new security schemes. The design and implementation of a crypto-steganographic algorithm for text is described below. The methodology employed consisted of using cellular automata to detect the edges of a carrier image, leveraging the color contrast diversity, and the Tinkerbell chaotic attractor to generate two pseudo-random sequences: one for the encryption scheme and the other to select the edge pixels of the carrier image where cryptogram bits are hidden. Additionally, a verification phase was included in which the receiver provides a code to confirm that the stegoimage was not altered. The system key is shared between the sender and the receiver using the Diffie-Hellman algorithm. The proposed algorithm was subjected to a series of steganographic and cryptographic performance tests, including entropy analysis, mean square error (MSE), correlation coefficients, key sensitivity, peak signal-to-noise ratio (PSNR), normalized root mean square error (NRMSE), and the structural similarity index (SSI). The results of PSNR, MSE and SSI test were compared with scientific benchmarks, revealing indicators that align with the standards of information security. Finally, a crypto-steganographic algorithm was consolidated as a result of an academic exercise whose indicators make it potentially applicable in real-world contexts. | en-US |
| dc.description | El intercambio de grandes cantidades de información a través de canales públicos se ha convertido en algo cotidiano, situación que genera grandes riesgos ante posibles ciberataques y motiva a la comunidad académica y científica a desarrollar nuevos esquemas robustos de seguridad. El objetivo de la investigación fue utilizar herramientas de matemáticas e inteligencia artificial para proponer nuevos esquemas de seguridad. A continuación, se describe el diseño e implementación de un algoritmo cripto-esteganográfico para texto. La metodología empleada consistió en usar autómatas celulares para detectar los bordes de una imagen portadora, aprovechando la diversidad de contrastes de color, así como el atractor caótico Tinkerbell para generar dos secuencias pseudoaleatorias: una para el esquema de cifrado y otra para seleccionar los píxeles de los bordes de la imagen portadora, donde se ocultan los bits del criptograma. Además, se incluyó una fase de verificación, en la que el receptor proporciona un código para confirmar que la imagen stego no fue manipulada. La clave del sistema se comparte entre el emisor y el receptor mediante el algoritmo Diffie-Hellman. El algoritmo propuesto se sometió a una serie de pruebas de rendimiento esteganográfico y criptográfico, tales como el análisis de entropía, el error cuadrático medio (MSE), los coeficientes de correlación, la sensibilidad de la clave, la relación señal-ruido máxima (PSNR), el error cuadrático medio normalizado (NRMSE) y el índice de similitud estructural (SSI). Los resultados de las pruebas PSNR, MSE y SSI, se compararon con referencias científicas, revelando indicadores que se ajustan a los estándares de seguridad de la información. Finalmente, se consolidó un algoritmo criptoesteganográfico resultado de un ejercicio académico cuyos indicadores lo convierten en potencial de aplicación en contextos del mundo real. | es-ES |
| dc.format | application/pdf | |
| dc.format | text/xml | |
| dc.format | application/zip | |
| dc.format | text/html | |
| dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3132 | |
| dc.identifier | 10.22430/22565337.3132 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12622/7914 | |
| dc.language | eng | |
| dc.publisher | Instituto Tecnológico Metropolitano (ITM) | es-ES |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3132/3409 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3132/3494 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3132/3550 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3132/3561 | |
| dc.relation | /*ref*/United Nation, “International Telecomunication Union,” sdgs.un.org. Accessed: Jun. 5, 2024. [Online]. Available: https://sdgs.un.org/un-system-sdg-implementation/international-telecommunication-union-itu-54247 | |
| dc.relation | /*ref*/C. E. Shannon, “Communication theory of secrecy systems,” The Bell System Technical Journal, vol. 28, no. 4, pp. 656-715, Oct. 1949. https://doi.org/10.1002/j.1538-7305.1949.tb00928.x | |
| dc.relation | /*ref*/C. E. Shannon, “A Mathematical Theory of Communication,” Bell Labs Technical Journal, vol. 27, no. 3, pp. 379-423, Jul. 1948. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x | |
| dc.relation | /*ref*/J. Von Neumann, “First draft of a report on the EDVAC,” in IEEE Annals of the History of Computing, vol. 15, no. 4, pp. 27-75, Dec. 1993. https://doi.org/10.1109/85.238389 | |
| dc.relation | /*ref*/S. Singh, The Code Book: The Secrets Behind Codebreaking, New York, NY, USA: Penguin random, 2002. https://www.penguinrandomhouse.com/books/168003/the-code-book-the-secrets-behind-codebreaking-by-simon-singh/9780375890123/ | |
| dc.relation | /*ref*/K M. M. de Leeuw, and J. Bergstra, Eds, “Computer Security” in The history of Information Security: A comprehensive handbook. Londres, Inglaterra: Elsevier Science, 2007. https://shop.elsevier.com/books/the-history-of-information-security/de-leeuw/978-0-444-51608-4 | |
| dc.relation | /*ref*/Y. Yu, “Preface to special topic on lattice-based cryptography,” National Science Review, vol. 8, no. 9, Sep. 2021. https://doi.org/10.1093/nsr/nwab154 | |
| dc.relation | /*ref*/M. J. Lucena López, Criptografía y Seguridad en Computadores, Jaen: Universidad de Jaén, 2022. https://ccia.esei.uvigo.es/docencia/SSI/cripto.pdf | |
| dc.relation | /*ref*/A. Yaghouti Niyat, and M. H. Moattar, “Color image encryption based on hybrid chaotic system and DNA sequences,” Multimedia Tools and Applications, vol. 79, p. 1497–1518, Jan. 2020. https://doi.org/10.1007/s11042-019-08247-z | |
| dc.relation | /*ref*/M. M. Savchuk, and A. V. Fesenko, “Quantum Computing: Survey and Analysis,” Cybernetics and Systems Analysis, vol. 55, pp. 10-21, Jan. 2019. https://doi.org/10.1007/s10559-019-00107-w | |
| dc.relation | /*ref*/L. M. Cortés Martinez, L. D. Alvarado Nieto, and E. I. Amaya Barrera, “Composite cellular automata based encryption method applied to surveillance videos,” Dyna (Medellin), vol. 87, no. 213, pp. 212–221, Apr. 2020. https://doi.org/10.15446/dyna.v87n213.81859 | |
| dc.relation | /*ref*/M. Hussain, A. W. Abdul Wahab, Y. I. Bin Idris, A. T. S. Ho, and J. Ki-Hyun, “Image steganography in spatial domain: A survey,” Signal Processing: Image Communication, vol. 65, pp. 46-66, Jul. 2018. https://doi.org/10.1016/j.image.2018.03.012 | |
| dc.relation | /*ref*/D. R. I. M. Setiadi, “Improved payload capacity in LSB image steganography uses dilated hybrid edge detection,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 2, pp. 104-114, Feb. 2022. https://doi.org/10.1016/j.jksuci.2019.12.007 | |
| dc.relation | /*ref*/B. Stoyanov, and K. Kordov, “Novel secure pseudo-random number generation scheme based on two Tinkerbell maps,” Adv. Stud. Theor. Phys., vol. 9, no. 9, pp. 411–421, 2015. https://www.m-hikari.com/astp/astp2015/astp9-12-2015/p/stoyanovASTP9-12-2015.pdf | |
| dc.relation | /*ref*/F. Y. Shih, Digital Watermarking and Steganography, Boca Ratón: CRC Press, 2017. https://doi.org/10.1201/9781315121109 | |
| dc.relation | /*ref*/M. Hassaballah, Digital media steganography: Principles, algorithms, and advances. San Diego, CA, Estados Unidos de América: Academic Press, 2020. https://doi.org/10.1016/C2018-0-04865-3 | |
| dc.relation | /*ref*/V. Lyubashevsky, “Lattice-based digital signatures,” National Science Review, vol. 8, no. 9, Sep. 2021. https://doi.org/10.1093/nsr/nwab077 | |
| dc.relation | /*ref*/R. S. Phadte, and R. Dhanaraj, “Enhanced blend of image steganography and cryptography,” in 2017 International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2017, pp. 230-235. https://doi.org/10.1109/ICCMC.2017.8282682 | |
| dc.relation | /*ref*/T. Saha, S. Sengupta and T. Dasgupta, “Chaotic cipher based spatial domain steganography with strong resistance against statistical attacks,” in 2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), Kolkata, India, 2017, pp. 365-370. https://doi.org/10.1109/ICRCICN.2017.8234536 | |
| dc.relation | /*ref*/A. Flores-Vergara et al., “Implementing a chaotic cryptosystem in a 64-bit embedded system by using multiple-precision arithmetic,” Nonlinear Dyn., vol. 96, no. 1, pp. 497–516, 2019. https://doi.org/10.1007/s11071-019-04802-3 | |
| dc.relation | /*ref*/I. Cherkaoui, and F. Zinoun, “On the use of Egyptian fractions for stream ciphers,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 26, no. 1, pp. 139-152, Nov. 2021. https://doi.org/10.1080/09720529.2021.1923921 | |
| dc.relation | /*ref*/Y. Satria, M. T. Suryadi and D. J. Cahyadi, “Digital text and digital image encryption and steganography method based on SIYu map and least significant bit,” Journal of Physics Conference Series, vol. 1821, no. 1, p. 012035, Mar. 2021. https://doi.org/10.1088/1742-6596/1821/1/012035 | |
| dc.relation | /*ref*/S. Kumar, P. K. Srivastava, G. K. Srivastava, P. Singhal, D. Singh, and D. Goyal, “Chaos based image encryption security in cloud computing,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 25, no. 4, pp. 1041-1051, Jun. 2022. https://doi.org/10.1080/09720529.2022.2075085 | |
| dc.relation | /*ref*/H. El Bourakkadi, A. Chemlal, H. Tabti, M. Kattass, A. Jarjar, and A. Benazzi, “Improved Vigenere approach incorporating pseudorandom affine functions for encrypting color images,” International Journal of Electrical and Computer Engineering (IJECE), vol. 14, no. 3, pp. 2684-2694, Jun. 2024. https://doi.org/10.11591/ijece.v14i3 | |
| dc.relation | /*ref*/J. Mohammed and D. R. Nayak, “An efficient edge detection technique by two dimensional rectangular cellular automata,” in International Conference on Information Communication and Embedded Systems (ICICES2014), Chennai, India, 2014, pp. 1-4. https://doi.org/10.1109/ICICES.2014.7033847 | |
| dc.relation | /*ref*/S. Kumar, A. Singh, and M. Kumar, “Information hiding with adaptive steganography based on novel fuzzy edge identification,” Defence Technology, vol. 15, no. 2, pp. 162-169, Apr. 2019. https://doi.org/10.1016/j.dt.2018.08.003 | |
| dc.relation | /*ref*/B. Lakshmi Sirisha, and B. Chandra Mohan, “Review on spatial domain image steganography techniques,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 24, no. 6, pp. 1873-1883, Sep. 2021. https://doi.org/10.1080/09720529.2021.1962025 | |
| dc.relation | /*ref*/S. Amrogowicz, Y. Zhao, and Y. Zhao, “An edge detection method using outer Totalistic Cellular Automata,” Neurocomputing, vol. 214, pp. 643-653, Nov. 2016. https://doi.org/10.1016/j.neucom.2016.05.092 | |
| dc.relation | /*ref*/A. Kumar, and S. K. Sharma, “Information cryptography using cellular automata and digital image processing,” Journal of Discrete Mathematical Sciences and Cryptography, vol. 25, no. 4, pp. 1105-1111, 2022. https://doi.org/10.1080/09720529.2022.2072437 | |
| dc.relation | /*ref*/N. Kar, K. Mandal and B. Bhattacharya, “Improved chaos-based video steganography using DNA alphabets,” ICT Express, vol. 4, no. 1, pp. 6-13, Mar. 2018. https://doi.org/10.1016/j.icte.2018.01.003 | |
| dc.relation | /*ref*/M. Arias Cárdenas, “Criptosistema Esteganográfico a través de Imágenes Digitales para el Cifrado de Texto Usando Teoría del Caos y Autómatas Celulares,” Tesis de grado, Universidad Distrital Francisco José de Caldas, Bogotá, 2020. https://repository.udistrital.edu.co/items/a34dbf52-d2c1-40f9-a1dc-a6d9ec463ab4 | |
| dc.relation | /*ref*/OpenSSL Corporation, “OpenSSL Cryptography and SSL/TLS Toolkit,” openssl.org. Accessed: [Online]. Available: https://www.openssl.org/. https://www.openssl.org/ | |
| dc.relation | /*ref*/W. Diffie, and M. Hellman, “New directions in cryptography,” IEEE Trans. Inf. Theory, vol. 22, no. 6, pp. 644–654, 1976. https://doi.org/10.1109/TIT.1976.1055638 | |
| dc.relation | /*ref*/G. Van Rossum. Python Software. V3.13, (2024). Centrum Wiskunde & Informatica (CWI). Netherlands. [Online]. Available: http://www.Python.org | |
| dc.relation | /*ref*/S. Yuan, T. Jiang, and Z. Jing, “Bifurcation and Chaos in the Tinkerbell Map,” International Journal of Bifurcation and Chaos, vol. 21, no. 11, pp. 3137-3156, 2011. https://doi.org/10.1142/S0218127411030581 | |
| dc.relation | /*ref*/USC Viterbi School of Engineering, “Signal and Image Processing Institute,” sipi.usc.edu. Accessed: Jun. 5, 2009. [Online]. Available: https://sipi.usc.edu/database/database.php | |
| dc.relation | /*ref*/L. Pardo LLorente, “Teoría de la información estadística,” Estadística Española, vol. 35, no. 133, pp. 195-268, 1993. https://ine.es/ss/Satellite?blobcol=urldata&blobheader=application%2Fpdf&blobheadername1=Content-Disposition&blobheadervalue1=attachment%3B+filename%3D133_1.pdf&blobkey=urldata&blobtable=MungoBlobs&blobwhere=583%2F542%2F133_1%2C0.pdf&ssbinary=true | |
| dc.relation | /*ref*/A. Saha, N. Manna, and S. Mandal, “India,” in Information theory, coding and cryptography: Pearson Education, 2013. https://books.google.com.co/books/about/Information_Theory_Coding_and_Cryptograp.html?id=iUI8BAAAQBAJ&redir_esc=y | |
| dc.relation | /*ref*/ | |
| dc.rights | Derechos de autor 2024 TecnoLógicas | es-ES |
| dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0 | es-ES |
| dc.source | TecnoLógicas; Vol. 27 No. 61 (2024); e3132 | en-US |
| dc.source | TecnoLógicas; Vol. 27 Núm. 61 (2024); e3132 | es-ES |
| dc.source | 2256-5337 | |
| dc.source | 0123-7799 | |
| dc.subject | seguridad | es-ES |
| dc.subject | autómatas celulares | es-ES |
| dc.subject | caos | es-ES |
| dc.subject | criptografía | es-ES |
| dc.subject | detección de bordes | es-ES |
| dc.subject | esteganografía | es-ES |
| dc.subject | security | en-US |
| dc.subject | cellular automata | en-US |
| dc.subject | chaos | en-US |
| dc.subject | cryptography | en-US |
| dc.subject | image edge detection | en-US |
| dc.subject | steganography | en-US |
| dc.title | Steganographic Cryptosystem Based on the Use of Chaos Theory and Cellular Automata | en-US |
| dc.title | Criptosistema esteganográfico basado en el uso de teoría del caos y autómatas celulares | es-ES |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |
| dc.type | Research Papers | en-US |
| dc.type | Artículos de investigación | es-ES |
Archivos
Bloque original
1 - 4 de 4
Cargando...
- Nombre:
- 2256-5337-teclo-27-61-e204.xml
- Tamaño:
- 92.23 KB
- Formato:
- Extensible Markup Language