Assessment of Permeable Pavements as a Technique to Mitigate Surface Runoff Peaks
| dc.creator | Pantoja Cárdenas, Jhoan Sebastián | |
| dc.creator | Zambrano Nájera, Jeannette | |
| dc.date | 2024-12-23 | |
| dc.date.accessioned | 2025-10-01T23:53:14Z | |
| dc.description | Stormwater flooding causes emergencies and disasters in cities worldwide. These floods are mainly caused by the impermeabilization of the watersheds. The problem worsens in cities like Manizales, with medium to high slopes, as high flow velocities occur, leading to increased runoff volumes, which in turn are associated with high peak flows. To mitigate these negative effects, Permeable Pavements (PP) have emerged as an alternative infrastructure solution. Considering this, the objective of this research was to assess the impact of PP in mitigating surface runoff peaks in watersheds with medium to high slopes. The methodology used involved hydrodynamic modeling with SWMM in the Palogrande San Luis experimental watershed, which exhibits the mentioned characteristics and is located in the city of Manizales, Colombia. PP was used for light-traffic vehicle roads in permeable asphalt, parking lots in permeable concrete, and common areas with permeable concrete pavers. The proposed PP for parking lots and common areas showed runoff reductions of only between 0 % and 20 %. Finally, it was concluded that the proposed PP for vehicular roads reduces surface runoff more than those proposed for common areas and parking lots, due to the impermeable contributing area associated with each one. | en-US |
| dc.description | Las inundaciones pluviales causan emergencias y desastres en las ciudades a nivel mundial. Dichas inundaciones se producen principalmente por la impermeabilización de las cuencas. El problema se agrava en ciudades como Manizales, con altas y medias pendientes, ya que se presentan altas velocidades de flujo y por tanto incrementos de los volúmenes de escorrentía, lo que a su vez está asociado con altos caudales punta. Para mitigar dichos efectos negativos han surgido los pavimentos permeables (PP) como infraestructura alternativa. Teniendo en cuenta lo anterior, el objetivo de esta investigación fue evaluar la capacidad de los PP para mitigar las intensidades de escorrentía superficial en cuencas con medias y altas pendientes. La metodología empleada consistió en realizar una modelación hidrodinámica con SWMM en la cuenca experimental Palogrande San Luis, cuenca que presenta las características mencionadas y está ubicada en la ciudad de Manizales, Colombia. Se utilizaron PP para vías vehiculares de tráfico liviano en asfalto permeable, parqueaderos en concreto permeable y áreas comunes en adoquines de concreto permeable. Los PP propuestos para parqueaderos y áreas comunes presentaron reducciones de escorrentía solo entre el 0 % y el 20 %. Se concluye que los PP propuestos en vías vehiculares reducen más la escorrentía superficial que aquellos propuestos en áreas comunes y en parqueaderos debido al área impermeable aportante que le corresponde a cada uno. | es-ES |
| dc.format | application/pdf | |
| dc.format | text/xml | |
| dc.format | application/zip | |
| dc.format | text/html | |
| dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3165 | |
| dc.identifier | 10.22430/22565337.3165 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12622/7918 | |
| dc.language | spa | |
| dc.publisher | Instituto Tecnológico Metropolitano (ITM) | es-ES |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3165/3473 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3165/3496 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3165/3552 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3165/3562 | |
| dc.relation | /*ref*/S. Ertan, and R. N. Çelik, “The Assessment of Urbanization Effect and Sustainable Drainage Solutions on Flood Hazard by GIS,” Sustainability, vol. 13, no. 4, p. 2293, Feb. 2021. https://doi.org/10.3390/su13042293 | |
| dc.relation | /*ref*/M. Ahern, R. S. Kovats, P. Wilkinson, R. Few, and F. Matthies, “Global health impacts of floods: Epidemiologic evidence,” Epidemiol. Rev., vol. 27, no. 1, pp. 36–46, Jul. 2005. https://doi.org/10.1093/epirev/mxi004 | |
| dc.relation | /*ref*/L. Sean, and O. Abiodun, “Natural Disasters, Their Health Effects, and the Significance of Disaster Epidemiology: A Review,” TPHA journal, vol. 73, no. 1, p. 10-14, 2021. https://web.p.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=1&sid=1968c2c2-150b-43ec-bd5a-e96be02a8726%40redis | |
| dc.relation | /*ref*/Departamento Nacional de Planeación. “3.181 muertos y 12,3 millones de afectados: las cifras de desastres naturales entre 2006 y 2014.” dnp.gov.co, Accessed: Jun. 9, 2024. [Online]. Available: https://2022.dnp.gov.co/Paginas/3-181-muertos,-21-594-emergencias-y-12,3-millones-de-afectados-las-cifras-de-los-desastres-naturales-entre-2006-y-2014-.aspx | |
| dc.relation | /*ref*/D. M. Rey Valencia, “Propuesta de sistema de drenaje urbano sostenible para cuencas de montaña con alta pendiente,” Tesis de maestría, Universidad Nacional de Colombia sede Manizales, 2019. https://repositorio.unal.edu.co/handle/unal/76582 | |
| dc.relation | /*ref*/A. Trapote Jaume, “Gestión de las aguas pluviales en entornos urbanos mediante técnicas de Drenaje Sostenible,” Journal of Engineering and Technology, vol. 5, no. 2, pp. 26–40, Dec. 2016. https://rua.ua.es/dspace/bitstream/10045/65629/1/2016_Trapote_JEngTechnol.pdf | |
| dc.relation | /*ref*/R. Ashley et al., “UK sustainable drainage systems: past, present and future,” Proc. Inst. Civ. Eng. Civ. Eng., vol. 168, no. 3, pp. 125–130, Aug. 2015. https://doi.org/10.1680/cien.15.00011 | |
| dc.relation | /*ref*/L. B. Leopold, Hydrology for Urban Land Planning - A Guidebook on the Hydrologic Effects of Urban Land Use, New York, NY, USA: U.S., Geological Survey, 1968. https://pubs.usgs.gov/circ/1968/0554/report.pdf | |
| dc.relation | /*ref*/I. Alcántara-Ayala, and A. Oliver-Smith, “Early Warning Systems: Lost in Translation or Late by Definition? A FORIN Approach,” Int. J. Disaster Risk Sci., vol. 10, no. 3, pp. 317–331, Sep. 2019. https://doi.org/10.1007/s13753-019-00231-3 | |
| dc.relation | /*ref*/M. Karbasi, A. Shokoohi, and B. Saghafian, “Loss of Life Estimation Due to Flash Floods in Residential Areas using a Regional Model,” Water Resour. Manag., vol. 32, no. 14, pp. 4575–4589, Nov. 2018. https://doi.org/10.1007/s11269-018-2071-9 | |
| dc.relation | /*ref*/W. R. Derrick Sewell, “Human Response to Floods,” in Introduction to Geographical Hydrology, United Kingdom, UK: Routledge, 2019, pp. 121–141. https://doi.org/10.4324/9780429273322-12 | |
| dc.relation | /*ref*/K. R. Trubey, S. Culpepper, Y. Maruyama, S. C. Kinnamon, and N. Chaudhari, “Tastants evoke cAMP signal in taste buds that is independent of calcium signaling,” Am. J. Physiol. Physiol., vol. 291, no. 2, pp. C237–C244, Aug. 2006. https://doi.org/10.1152/ajpcell.00303.2005 | |
| dc.relation | /*ref*/S. M. Perales, A. Doménec, and E. A. Fernández Escalante, “Los sistemas urbanos de drenaje sostenible (SUDS) en la hidrogeología urbana,” Grupo TRAGSA Madrid. IX Simp. Hidrogeol. AIH. Elche, Val., pp. 1–12, 2008. https://www.adta.es/actuaciones/agua/2011%2006%2015%20SistemasUrbanosDrenajeSostenible.pdf | |
| dc.relation | /*ref*/B. Woods Ballard et al., The SuDS Manual. (2015). CIRIA. London. Accessed: Jun. 12, 2024. [Online]. Available: https://www.scotsnet.org.uk/__data/assets/pdf_file/0023/51764/CIRIA-report-C753-the-SuDS-manual-v6.pdf | |
| dc.relation | /*ref*/C. García-Casuso, P. Lapeña-Mañero, E. Blanco-Fernández, A. Vega-Zamanillo, and J. M. Montenegro-Cooper “Laboratory Assessment of Water Permeability Loss of Geotextiles Due to Their Installation in Pervious Pavements,” Water, vol. 12, no. 5, p. 1473, May. 2020. https://doi.org/10.3390/w12051473 | |
| dc.relation | /*ref*/T. D. Fletcher, H. P. Duncan, P. Poelsma, and S. D. Lloyd, “Storm Water Flow and Quality, and the Effectiveness of Non-Proprietary Storm Water Treatment Measures – a Review and Gap Analysis,” Cooperative Research Centre for Catchment Hydrology, Technical Report, Clayton, Australia, 2005. [Online]. Available: https://ewater.org.au/archive/crcch/archive/pubs/1000163.html | |
| dc.relation | /*ref*/B. E. Hatt, T. D. Fletcher, and A. Deletic, “Hydrologic and Pollutant Removal Performance of Stormwater Biofiltration Systems at the Field Scale,” Journal of Hydrology, vol. 365, no. 3–4, pp. 310–321, Feb. 2007. https://doi.org/10.1016/j.jhydrol.2008.12.001 | |
| dc.relation | /*ref*/B. Horton, C. J Digman, R. M. Ashley, and E. Gill, BeST (Benefits of SuDS Tool) Technical Guidance. (2016). CIRIA. London. Accessed: Jun. 13, 2024. [Online]. Available: http://observatoriaigua.uib.es/repositori/suds_ciria_technical_2.pdf | |
| dc.relation | /*ref*/M. L. Castro Espinosa, “Pavimentos permeables como alternativa de drenaje urbano,” Tesis de grado, Pontificia Universidad Javeriana, Bogotá, Colombia, 2011. https://core.ac.uk/download/pdf/71418921.pdf | |
| dc.relation | /*ref*/L. A. Sañudo-Fontaneda, “Análisis de la infiltración de agua de lluvia en firmes permeables con superficies de adoquines y aglomerados porosos para el control en origen de inundaciones,” Tesis de grado, Universidad de Cantabria, España, 2014. https://portalinvestigacion.uniovi.es/documentos/5e57ae0b2999527d991a3453 | |
| dc.relation | /*ref*/G. Hammes, L. P. Thives, and E. Ghisi, “Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings,” J. Environ. Manage., vol. 222, pp. 338–347, Sep. 2018. https://doi.org/10.1016/j.jenvman.2018.05.094 | |
| dc.relation | /*ref*/M. Perales, “‘Construcción del aparcamiento de firmes permeables del Parque de Las Llamas, Santander,” Tesis de grado, Universidad de Cantabria, España, 2014. https://repositorio.unican.es/xmlui/handle/10902/5571 | |
| dc.relation | /*ref*/J. Rodríguez Hernández, “Estudio, análisis y diseño de secciones permeables de firmes para vías urbanas con un comportamiento adecuado frente a la colmatación y con la capacidad portante necesaria para soportar tráficos ligeros,” Tesis doctoral, Universidad de Cantabria, Cantabria - España, 2008. https://pureportal.coventry.ac.uk/en/publications/estudio-an%C3%A1lisis-y-dise%C3%B1o-de-secciones-permeables-de-firmes-para- | |
| dc.relation | /*ref*/A. Mohamed, “Performance of Underside Shaped Concrete Blocks for Pavement,” Ph.D. dissertation, University Teknologi Malaysia, Johor, Malasia, 2014. https://eprints.utm.my/77868/1/AzmanMohamedPFKA2014.pdf | |
| dc.relation | /*ref*/J. Mullaney, and T. Lucke, “Practical Review of Pervious Pavement Designs,” Clean – Soil, Air, Water, vol. 42, no. 2, pp. 111–124, Feb. 2014. https://doi.org/10.1002/clen.201300118 | |
| dc.relation | /*ref*/M. Chopra, S. Kakuturu, C. Ballock, J. Spence, and M. Wanielista, “Effect of Rejuvenation Methods on the Infiltration Rates of Pervious Concrete Pavements,” J. Hydrol. Eng., vol. 15, no. 6, pp. 426–433, Oct. 2009. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000117 | |
| dc.relation | /*ref*/J. A. P. Drake, A. Bradford, and J. Marsalek, “Review of environmental performance of permeable pavement systems: state of the knowledge,” Water Qual. Res. J., vol. 48, no. 3, pp. 203–222, Aug. 2013. https://doi.org/10.2166/wqrjc.2013.055 | |
| dc.relation | /*ref*/F. Li, Y. Liu, B. A. Engel, J. Chen, and H. Sun, “Green infrastructure practices simulation of the impacts of land use on surface runoff: Case study in Ecorse River watershed, Michigan,” J. Environ. Manage., vol. 233, pp. 603–611, Mar. 2019. https://doi.org/10.1016/j.jenvman.2018.12.078 | |
| dc.relation | /*ref*/A. Palla, and I. Gnecco, “Hydrologic modeling of Low Impact Development systems at the urban catchment scale,” Journal of Hydrology, vol. 528, pp. 361–368 Sep. 2015. https://doi.org/10.1016/j.jhydrol.2015.06.050 | |
| dc.relation | /*ref*/T. H. Papakos, M. Gould, and J. Brunner, “Redeveloping Brownfields with LID Design,” in Low Impact Development 2010, Reston, VA: American Society of Civil Engineers, 2010, pp. 1684–1697. https://doi.org/10.1061/41099(367)145 | |
| dc.relation | /*ref*/Q. Hua-Peng, l. Zhuo-xi, and F. Guangtao, “The effects of low impact development on urban flooding under different rainfall characteristics,” J. Environ. Manage., vol. 129, pp. 577–585, Nov. 2013. https://doi.org/10.1016/j.jenvman.2013.08.026 | |
| dc.relation | /*ref*/J. Huang, J. He, C. Valeo, and A. Chu, “Temporal evolution modeling of hydraulic and water quality performance of permeable pavements,” J. Hydrol., vol. 533, pp. 15–27, Feb. 2016. https://doi.org/10.1016/j.jhydrol.2015.11.042 | |
| dc.relation | /*ref*/K. Collins, W. F. Hunt, and J. Hathaway, “Hydrologic comparison of four types of permeable pavement and standard asphalt in easter North Carolina.,” J. Hydrol. Eng., vol. 13, no. 12, pp. 1146–1157, Dec. 2008. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:12(1146) | |
| dc.relation | /*ref*/E. A. Fassman, and S. Blackbourn, “Urban Runoff Mitigation by a Permeable Pavement System Over Impermeable Soils,” J. Hydrol. Eng., vol. 15, no. 6, pp. 475–485, Mar. 2010. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000238 | |
| dc.relation | /*ref*/T. Liu, Y. Lawluvy, Y. Shi, and Y. Pow-Seng, “Low Impact Development (LID) Practices: A Review on Recent Developments, Challenges and Prospects,” Water, Air, Soil Pollut., vol. 232, no. 9, p. 344, Aug. 2021. https://doi.org/10.1007/s11270-021-05262-5 | |
| dc.relation | /*ref*/M. Shafique, and R. Kim, “Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions,” Ecol. Chem. Eng. S., vol. 22, no. 4, pp. 543–563, Dec. 2015. https://doi.org/10.1515/eces-2015-0032 | |
| dc.relation | /*ref*/M. Kamali, M. Delkash, and M. Tajrishy, “Evaluation of permeable pavement responses to urban surface runoff,” J. Environ. Manage., vol. 187, pp. 43–53, Feb. 2017. https://doi.org/10.1016/j.jenvman.2016.11.027 | |
| dc.relation | /*ref*/C. Damodaram et al., “Simulation of Combined Best Management Practices and Low Impact Development for Sustainable Stormwater Management,” JAWRA J. Am. Water Resour. Assoc., vol. 46, no. 5, pp. 907–918, Oct. 2010. https://doi.org/10.1111/j.1752-1688.2010.00462.x | |
| dc.relation | /*ref*/D. M. Rey Valencia, and J. del C. Zambrano Nájera, “Estudio de la respuesta hidrológica en la cuenca urbana de montaña San Luis-Palogrande,” Rev. UIS ing., vol. 17, no. 1, pp. 115–126, Jan. 2018. https://doi.org/10.18273/revuin.v17n1-2018011 | |
| dc.relation | /*ref*/Y. C. Cabezas Suárez, and J. del C. Zambrano Najera, “Evaluación del Impacto de los Cambios de Usos del Suelo sobre la Hidrología de Cuencas Urbanas. Caso de aplicación cuenca San Luis,” in V Encuentro Regional de Semilleros de Investigación RREDSI., Manizales, Colombia, Sep-oct 2015. https://rredsi.com.co/wp-content/uploads/2018/10/memorias_VIII/MEMORIAS%20RREDSI%202015%20COMPLETO.pdf | |
| dc.relation | /*ref*/Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, and R. Turcotte, Calibration of watershed models. New York, NY, USA: John Wiley & Sons, 2003. https://www.wiley.com/en-us/Calibration+of+Watershed+Models-p-9780875903552 | |
| dc.relation | /*ref*/Urban Drainage and Flood Control District. Urban Storm Drainage Criteria Manual Volume 3, Best Management Practice. Denver. Colorado. (2010). Accessed: Apr. 1, 2024. [Online]. Available: https://yosemite.epa.gov/oa/eab_web_docket.nsf/Attachments%20By%20ParentFilingId/AD542E028730375785257C5100567622/$FILE/EPA-BAFB-00001518.pdf | |
| dc.relation | /*ref*/Riverside County Flood Control and Water Conservation District. Low Impact Development Best Management Practice Design Handbook. United States. (2011). Accessed: Apr. 1, 2024. [Online]. Available: https://www.conservenorthtexas.org/item/Riverside-County-Flood-Control-and-Water-Conservat | |
| dc.relation | /*ref*/California Department of Transportation, Pervious Pavement Design Guidance. California. Estados Unidos. (2013). Accessed: Apr. 1, 2024. [Online]. Available: https://dot.ca.gov/-/media/dot-media/programs/design/documents/pervious-pavement-dg-dor.pdf | |
| dc.relation | /*ref*/L. M. Leming, H. R. Malcom, and D. P. Tennis, Hydrologic Design of Pervious Concrete, Portland Cement Association, Skokie, Illinois, and National Ready Mixed Concrete Association, Eds., Silver Spring, Maryland, USA: PCA, 2007, pp. 72. https://secement.org/wp-content/uploads/2016/02/EB303.pdf | |
| dc.relation | /*ref*/F. Leiva Villacorta. Nueva guía de diseño mecanística-empírica para estructuras de pavimento (vistazo a la guía 2002, proyecto nchrp i 37a). San Pedro. Costa Rica. (2006). Accessed: Apr. 1, 2024. [Online]. Available: https://www.lanamme.ucr.ac.cr/repositorio/bitstream/handle/50625112500/438/GUIA_DISENO_MECANISTICA_EMPIRICA.pdf?sequence=1&isAllowed=y | |
| dc.relation | /*ref*/B. K. Ferguson, Porous Pavements. Boca Raton, FL, USA: CRC Press, 2005. https://doi.org/10.1201/9781420038439 | |
| dc.relation | /*ref*/H. Li, D. Jones, and J. Harvey, “Development of mechanistic–empirical design procedure for fully permeable pavement under heavy traffic,” Transp. Res. Rec., vol. 2305, no. 1, pp. 83–94, 2012. https://doi.org/10.3141/2305-09 | |
| dc.relation | /*ref*/K. D. Hall, and C. W. Schwartz, “Development of structural design guidelines for porous asphalt pavement,” Transp. Res. Rec., vol. 2672, no. 40, pp. 197–206, Mar. 2018. https://doi.org/10.1177/0361198118758335 | |
| dc.relation | /*ref*/P. Cárdenas, and J. Sebastián, “Evaluación de la capacidad de atenuación de flujos de escorrentía superficial de pavimentos permeables en cuencas con medias y altas pendientes” Tesis de maestría, Universidad Nacional de Colombia, 2024. https://repositorio.unal.edu.co/handle/unal/86721 | |
| dc.relation | /*ref*/Resolución 330 de 2017. RAS 2017 Reglamento técnico del sector de agua potable y saneamiento Básico, Ministerio de Vivienda Ciudad y Territorio, Bogotá, Colombia, 2017. https://minvivienda.gov.co/normativa/resolucion-0330-2017-0 | |
| dc.relation | /*ref*/C. J. Pratt, J. D. G. Mantle, and P. A. Schofield, “UK research into the performance of permeable pavement, reservoir structures in controlling stormwater discharge quantity and quality,” Water Sci. Technol., vol. 32, no. 1, pp. 63–69, 1995. https://doi.org/10.2166/wst.1995.0016 | |
| dc.relation | /*ref*/B. T. Rushton, “Low-impact parking lot design reduces runoff and pollutant loads,” J. Water Resour. Plan. Manag., vol. 127, no. 3, pp. 172–179, 2001. https://doi.org/10.1061/(ASCE)0733-9496(2001)127:3(172) | |
| dc.relation | /*ref*/C. L. Abbott, and L. Comino-Mateos, “In‐situ hydraulic performance of a permeable pavement sustainable urban drainage system,” Water Environ. J., vol. 17, no. 3, pp. 187–190, Jul. 2003. https://doi.org/10.1111/j.1747-6593.2003.tb00460.x | |
| dc.relation | /*ref*/E. Zachary Bean, W. Frederick Hunt, and D. Alan Bidelspach, “Evaluation of four permeable pavement sites in eastern North Carolina for runoff reduction and water quality impacts,” J. Irrig. Drain. Eng., vol. 133, no. 6, pp. 583–592, 2007. https://programs.ifas.ufl.edu/media/programsifasufledu/shed/publications/2007-Bean-Evaluation-of-four-permeable-pavement-sites-in-Eastern-North-Carolina-for-runoff-reduction-and-water-quality-impacts.pdf | |
| dc.relation | /*ref*/L. Zanoni, A. Boysen, M. Carlson, and J. Harris “The Benefits of Using Porous Asphalt Pavement in Comparison with Other Forms of Pervious Pavements,” Degree thesis, University of Illinois at Chicago College of Engineering, 2018. https://www.il-asphalt.org/files/3715/4896/1291/Luke_Zanoni_2018_UIUCgo.pdf | |
| dc.relation | /*ref*/A. Singh, P. Vaddy, and K. P. Biligiri, “Quantification of embodied energy and carbon footprint of pervious concrete pavements through a methodical lifecycle assessment framework,” Resour. Conserv. Recycl., vol. 161, p. 104953, Oct. 2020. https://doi.org/10.1016/j.resconrec.2020.104953 | |
| dc.relation | /*ref*/J. Zeng, G. Huang, Y. Mai, and W. Chen, “Optimizing the cost-effectiveness of low impact development (LID) practices using an analytical probabilistic approach,” Urban Water J., vol. 17, no. 2, pp. 136–143, 2020. https://doi.org/10.1080/1573062X.2020.1748208 | |
| dc.relation | /*ref*/L. N. Antunes, E. Ghisi, and L. P. Thives, “Permeable pavements life cycle assessment: A literature review,” Water, vol. 10, no. 11, p. 1575, Nov. 2018. https://doi.org/10.3390/w10111575 | |
| dc.relation | /*ref*/ | |
| dc.rights | Derechos de autor 2024 TecnoLógicas | es-ES |
| dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0 | es-ES |
| dc.source | TecnoLógicas; Vol. 27 No. 61 (2024); e3165 | en-US |
| dc.source | TecnoLógicas; Vol. 27 Núm. 61 (2024); e3165 | es-ES |
| dc.source | 2256-5337 | |
| dc.source | 0123-7799 | |
| dc.subject | altas pendientes | es-ES |
| dc.subject | ciudades empinadas | es-ES |
| dc.subject | inundaciones pluviales | es-ES |
| dc.subject | pavimentos permeables | es-ES |
| dc.subject | sistemas urbanos de drenaje sostenible | es-ES |
| dc.subject | high slopes | en-US |
| dc.subject | steep cities | en-US |
| dc.subject | stormwater floods | en-US |
| dc.subject | permeable pavements | en-US |
| dc.subject | sustainable urban drainage systems | en-US |
| dc.title | Assessment of Permeable Pavements as a Technique to Mitigate Surface Runoff Peaks | en-US |
| dc.title | Evaluación de pavimentos permeables como técnica para mitigar picos de escorrentía superficial | es-ES |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |
| dc.type | Research Papers | en-US |
| dc.type | Artículos de investigación | es-ES |
Archivos
Bloque original
1 - 4 de 4
Cargando...
- Nombre:
- 2256-5337-teclo-27-61-e206.xml
- Tamaño:
- 130.52 KB
- Formato:
- Extensible Markup Language