Assessment of Permeable Pavements as a Technique to Mitigate Surface Runoff Peaks

dc.creatorPantoja Cárdenas, Jhoan Sebastián
dc.creatorZambrano Nájera, Jeannette
dc.date2024-12-23
dc.date.accessioned2025-10-01T23:53:14Z
dc.descriptionStormwater flooding causes emergencies and disasters in cities worldwide. These floods are mainly caused by the impermeabilization of the watersheds. The problem worsens in cities like Manizales, with medium to high slopes, as high flow velocities occur, leading to increased runoff volumes, which in turn are associated with high peak flows. To mitigate these negative effects, Permeable Pavements (PP) have emerged as an alternative infrastructure solution. Considering this, the objective of this research was to assess the impact of PP in mitigating surface runoff peaks in watersheds with medium to high slopes. The methodology used involved hydrodynamic modeling with SWMM in the Palogrande San Luis experimental watershed, which exhibits the mentioned characteristics and is located in the city of Manizales, Colombia. PP was used for light-traffic vehicle roads in permeable asphalt, parking lots in permeable concrete, and common areas with permeable concrete pavers. The proposed PP for parking lots and common areas showed runoff reductions of only between 0 % and 20 %. Finally, it was concluded that the proposed PP for vehicular roads reduces surface runoff more than those proposed for common areas and parking lots, due to the impermeable contributing area associated with each one.en-US
dc.descriptionLas inundaciones pluviales causan emergencias y desastres en las ciudades a nivel mundial. Dichas inundaciones se producen principalmente por la impermeabilización de las cuencas. El problema se agrava en ciudades como Manizales, con altas y medias pendientes, ya que se presentan altas velocidades de flujo y por tanto incrementos de los volúmenes de escorrentía, lo que a su vez está asociado con altos caudales punta. Para mitigar dichos efectos negativos han surgido los pavimentos permeables (PP) como infraestructura alternativa. Teniendo en cuenta lo anterior, el objetivo de esta investigación fue evaluar la capacidad de los PP para mitigar las intensidades de escorrentía superficial en cuencas con medias y altas pendientes. La metodología empleada consistió en realizar una modelación hidrodinámica con SWMM en la cuenca experimental Palogrande San Luis, cuenca que presenta las características mencionadas y está ubicada en la ciudad de Manizales, Colombia. Se utilizaron PP para vías vehiculares de tráfico liviano en asfalto permeable, parqueaderos en concreto permeable y áreas comunes en adoquines de concreto permeable. Los PP propuestos para parqueaderos y áreas comunes presentaron reducciones de escorrentía solo entre el 0 % y el 20 %. Se concluye que los PP propuestos en vías vehiculares reducen más la escorrentía superficial que aquellos propuestos en áreas comunes y en parqueaderos debido al área impermeable aportante que le corresponde a cada uno.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3165
dc.identifier10.22430/22565337.3165
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7918
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3165/3473
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3165/3496
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3165/3552
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3165/3562
dc.relation/*ref*/S. Ertan, and R. N. Çelik, “The Assessment of Urbanization Effect and Sustainable Drainage Solutions on Flood Hazard by GIS,” Sustainability, vol. 13, no. 4, p. 2293, Feb. 2021. https://doi.org/10.3390/su13042293
dc.relation/*ref*/M. Ahern, R. S. Kovats, P. Wilkinson, R. Few, and F. Matthies, “Global health impacts of floods: Epidemiologic evidence,” Epidemiol. Rev., vol. 27, no. 1, pp. 36–46, Jul. 2005. https://doi.org/10.1093/epirev/mxi004
dc.relation/*ref*/L. Sean, and O. Abiodun, “Natural Disasters, Their Health Effects, and the Significance of Disaster Epidemiology: A Review,” TPHA journal, vol. 73, no. 1, p. 10-14, 2021. https://web.p.ebscohost.com/ehost/pdfviewer/pdfviewer?vid=1&sid=1968c2c2-150b-43ec-bd5a-e96be02a8726%40redis
dc.relation/*ref*/Departamento Nacional de Planeación. “3.181 muertos y 12,3 millones de afectados: las cifras de desastres naturales entre 2006 y 2014.” dnp.gov.co, Accessed: Jun. 9, 2024. [Online]. Available: https://2022.dnp.gov.co/Paginas/3-181-muertos,-21-594-emergencias-y-12,3-millones-de-afectados-las-cifras-de-los-desastres-naturales-entre-2006-y-2014-.aspx
dc.relation/*ref*/D. M. Rey Valencia, “Propuesta de sistema de drenaje urbano sostenible para cuencas de montaña con alta pendiente,” Tesis de maestría, Universidad Nacional de Colombia sede Manizales, 2019. https://repositorio.unal.edu.co/handle/unal/76582
dc.relation/*ref*/A. Trapote Jaume, “Gestión de las aguas pluviales en entornos urbanos mediante técnicas de Drenaje Sostenible,” Journal of Engineering and Technology, vol. 5, no. 2, pp. 26–40, Dec. 2016. https://rua.ua.es/dspace/bitstream/10045/65629/1/2016_Trapote_JEngTechnol.pdf
dc.relation/*ref*/R. Ashley et al., “UK sustainable drainage systems: past, present and future,” Proc. Inst. Civ. Eng. Civ. Eng., vol. 168, no. 3, pp. 125–130, Aug. 2015. https://doi.org/10.1680/cien.15.00011
dc.relation/*ref*/L. B. Leopold, Hydrology for Urban Land Planning - A Guidebook on the Hydrologic Effects of Urban Land Use, New York, NY, USA: U.S., Geological Survey, 1968. https://pubs.usgs.gov/circ/1968/0554/report.pdf
dc.relation/*ref*/I. Alcántara-Ayala, and A. Oliver-Smith, “Early Warning Systems: Lost in Translation or Late by Definition? A FORIN Approach,” Int. J. Disaster Risk Sci., vol. 10, no. 3, pp. 317–331, Sep. 2019. https://doi.org/10.1007/s13753-019-00231-3
dc.relation/*ref*/M. Karbasi, A. Shokoohi, and B. Saghafian, “Loss of Life Estimation Due to Flash Floods in Residential Areas using a Regional Model,” Water Resour. Manag., vol. 32, no. 14, pp. 4575–4589, Nov. 2018. https://doi.org/10.1007/s11269-018-2071-9
dc.relation/*ref*/W. R. Derrick Sewell, “Human Response to Floods,” in Introduction to Geographical Hydrology, United Kingdom, UK: Routledge, 2019, pp. 121–141. https://doi.org/10.4324/9780429273322-12
dc.relation/*ref*/K. R. Trubey, S. Culpepper, Y. Maruyama, S. C. Kinnamon, and N. Chaudhari, “Tastants evoke cAMP signal in taste buds that is independent of calcium signaling,” Am. J. Physiol. Physiol., vol. 291, no. 2, pp. C237–C244, Aug. 2006. https://doi.org/10.1152/ajpcell.00303.2005
dc.relation/*ref*/S. M. Perales, A. Doménec, and E. A. Fernández Escalante, “Los sistemas urbanos de drenaje sostenible (SUDS) en la hidrogeología urbana,” Grupo TRAGSA Madrid. IX Simp. Hidrogeol. AIH. Elche, Val., pp. 1–12, 2008. https://www.adta.es/actuaciones/agua/2011%2006%2015%20SistemasUrbanosDrenajeSostenible.pdf
dc.relation/*ref*/B. Woods Ballard et al., The SuDS Manual. (2015). CIRIA. London. Accessed: Jun. 12, 2024. [Online]. Available: https://www.scotsnet.org.uk/__data/assets/pdf_file/0023/51764/CIRIA-report-C753-the-SuDS-manual-v6.pdf
dc.relation/*ref*/C. García-Casuso, P. Lapeña-Mañero, E. Blanco-Fernández, A. Vega-Zamanillo, and J. M. Montenegro-Cooper “Laboratory Assessment of Water Permeability Loss of Geotextiles Due to Their Installation in Pervious Pavements,” Water, vol. 12, no. 5, p. 1473, May. 2020. https://doi.org/10.3390/w12051473
dc.relation/*ref*/T. D. Fletcher, H. P. Duncan, P. Poelsma, and S. D. Lloyd, “Storm Water Flow and Quality, and the Effectiveness of Non-Proprietary Storm Water Treatment Measures – a Review and Gap Analysis,” Cooperative Research Centre for Catchment Hydrology, Technical Report, Clayton, Australia, 2005. [Online]. Available: https://ewater.org.au/archive/crcch/archive/pubs/1000163.html
dc.relation/*ref*/B. E. Hatt, T. D. Fletcher, and A. Deletic, “Hydrologic and Pollutant Removal Performance of Stormwater Biofiltration Systems at the Field Scale,” Journal of Hydrology, vol. 365, no. 3–4, pp. 310–321, Feb. 2007. https://doi.org/10.1016/j.jhydrol.2008.12.001
dc.relation/*ref*/B. Horton, C. J Digman, R. M. Ashley, and E. Gill, BeST (Benefits of SuDS Tool) Technical Guidance. (2016). CIRIA. London. Accessed: Jun. 13, 2024. [Online]. Available: http://observatoriaigua.uib.es/repositori/suds_ciria_technical_2.pdf
dc.relation/*ref*/M. L. Castro Espinosa, “Pavimentos permeables como alternativa de drenaje urbano,” Tesis de grado, Pontificia Universidad Javeriana, Bogotá, Colombia, 2011. https://core.ac.uk/download/pdf/71418921.pdf
dc.relation/*ref*/L. A. Sañudo-Fontaneda, “Análisis de la infiltración de agua de lluvia en firmes permeables con superficies de adoquines y aglomerados porosos para el control en origen de inundaciones,” Tesis de grado, Universidad de Cantabria, España, 2014. https://portalinvestigacion.uniovi.es/documentos/5e57ae0b2999527d991a3453
dc.relation/*ref*/G. Hammes, L. P. Thives, and E. Ghisi, “Application of stormwater collected from porous asphalt pavements for non-potable uses in buildings,” J. Environ. Manage., vol. 222, pp. 338–347, Sep. 2018. https://doi.org/10.1016/j.jenvman.2018.05.094
dc.relation/*ref*/M. Perales, “‘Construcción del aparcamiento de firmes permeables del Parque de Las Llamas, Santander,” Tesis de grado, Universidad de Cantabria, España, 2014. https://repositorio.unican.es/xmlui/handle/10902/5571
dc.relation/*ref*/J. Rodríguez Hernández, “Estudio, análisis y diseño de secciones permeables de firmes para vías urbanas con un comportamiento adecuado frente a la colmatación y con la capacidad portante necesaria para soportar tráficos ligeros,” Tesis doctoral, Universidad de Cantabria, Cantabria - España, 2008. https://pureportal.coventry.ac.uk/en/publications/estudio-an%C3%A1lisis-y-dise%C3%B1o-de-secciones-permeables-de-firmes-para-
dc.relation/*ref*/A. Mohamed, “Performance of Underside Shaped Concrete Blocks for Pavement,” Ph.D. dissertation, University Teknologi Malaysia, Johor, Malasia, 2014. https://eprints.utm.my/77868/1/AzmanMohamedPFKA2014.pdf
dc.relation/*ref*/J. Mullaney, and T. Lucke, “Practical Review of Pervious Pavement Designs,” Clean – Soil, Air, Water, vol. 42, no. 2, pp. 111–124, Feb. 2014. https://doi.org/10.1002/clen.201300118
dc.relation/*ref*/M. Chopra, S. Kakuturu, C. Ballock, J. Spence, and M. Wanielista, “Effect of Rejuvenation Methods on the Infiltration Rates of Pervious Concrete Pavements,” J. Hydrol. Eng., vol. 15, no. 6, pp. 426–433, Oct. 2009. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000117
dc.relation/*ref*/J. A. P. Drake, A. Bradford, and J. Marsalek, “Review of environmental performance of permeable pavement systems: state of the knowledge,” Water Qual. Res. J., vol. 48, no. 3, pp. 203–222, Aug. 2013. https://doi.org/10.2166/wqrjc.2013.055
dc.relation/*ref*/F. Li, Y. Liu, B. A. Engel, J. Chen, and H. Sun, “Green infrastructure practices simulation of the impacts of land use on surface runoff: Case study in Ecorse River watershed, Michigan,” J. Environ. Manage., vol. 233, pp. 603–611, Mar. 2019. https://doi.org/10.1016/j.jenvman.2018.12.078
dc.relation/*ref*/A. Palla, and I. Gnecco, “Hydrologic modeling of Low Impact Development systems at the urban catchment scale,” Journal of Hydrology, vol. 528, pp. 361–368 Sep. 2015. https://doi.org/10.1016/j.jhydrol.2015.06.050
dc.relation/*ref*/T. H. Papakos, M. Gould, and J. Brunner, “Redeveloping Brownfields with LID Design,” in Low Impact Development 2010, Reston, VA: American Society of Civil Engineers, 2010, pp. 1684–1697. https://doi.org/10.1061/41099(367)145
dc.relation/*ref*/Q. Hua-Peng, l. Zhuo-xi, and F. Guangtao, “The effects of low impact development on urban flooding under different rainfall characteristics,” J. Environ. Manage., vol. 129, pp. 577–585, Nov. 2013. https://doi.org/10.1016/j.jenvman.2013.08.026
dc.relation/*ref*/J. Huang, J. He, C. Valeo, and A. Chu, “Temporal evolution modeling of hydraulic and water quality performance of permeable pavements,” J. Hydrol., vol. 533, pp. 15–27, Feb. 2016. https://doi.org/10.1016/j.jhydrol.2015.11.042
dc.relation/*ref*/K. Collins, W. F. Hunt, and J. Hathaway, “Hydrologic comparison of four types of permeable pavement and standard asphalt in easter North Carolina.,” J. Hydrol. Eng., vol. 13, no. 12, pp. 1146–1157, Dec. 2008. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:12(1146)
dc.relation/*ref*/E. A. Fassman, and S. Blackbourn, “Urban Runoff Mitigation by a Permeable Pavement System Over Impermeable Soils,” J. Hydrol. Eng., vol. 15, no. 6, pp. 475–485, Mar. 2010. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000238
dc.relation/*ref*/T. Liu, Y. Lawluvy, Y. Shi, and Y. Pow-Seng, “Low Impact Development (LID) Practices: A Review on Recent Developments, Challenges and Prospects,” Water, Air, Soil Pollut., vol. 232, no. 9, p. 344, Aug. 2021. https://doi.org/10.1007/s11270-021-05262-5
dc.relation/*ref*/M. Shafique, and R. Kim, “Low Impact Development Practices: A Review of Current Research and Recommendations for Future Directions,” Ecol. Chem. Eng. S., vol. 22, no. 4, pp. 543–563, Dec. 2015. https://doi.org/10.1515/eces-2015-0032
dc.relation/*ref*/M. Kamali, M. Delkash, and M. Tajrishy, “Evaluation of permeable pavement responses to urban surface runoff,” J. Environ. Manage., vol. 187, pp. 43–53, Feb. 2017. https://doi.org/10.1016/j.jenvman.2016.11.027
dc.relation/*ref*/C. Damodaram et al., “Simulation of Combined Best Management Practices and Low Impact Development for Sustainable Stormwater Management,” JAWRA J. Am. Water Resour. Assoc., vol. 46, no. 5, pp. 907–918, Oct. 2010. https://doi.org/10.1111/j.1752-1688.2010.00462.x
dc.relation/*ref*/D. M. Rey Valencia, and J. del C. Zambrano Nájera, “Estudio de la respuesta hidrológica en la cuenca urbana de montaña San Luis-Palogrande,” Rev. UIS ing., vol. 17, no. 1, pp. 115–126, Jan. 2018. https://doi.org/10.18273/revuin.v17n1-2018011
dc.relation/*ref*/Y. C. Cabezas Suárez, and J. del C. Zambrano Najera, “Evaluación del Impacto de los Cambios de Usos del Suelo sobre la Hidrología de Cuencas Urbanas. Caso de aplicación cuenca San Luis,” in V Encuentro Regional de Semilleros de Investigación RREDSI., Manizales, Colombia, Sep-oct 2015. https://rredsi.com.co/wp-content/uploads/2018/10/memorias_VIII/MEMORIAS%20RREDSI%202015%20COMPLETO.pdf
dc.relation/*ref*/Q. Duan, H. V. Gupta, S. Sorooshian, A. N. Rousseau, and R. Turcotte, Calibration of watershed models. New York, NY, USA: John Wiley & Sons, 2003. https://www.wiley.com/en-us/Calibration+of+Watershed+Models-p-9780875903552
dc.relation/*ref*/Urban Drainage and Flood Control District. Urban Storm Drainage Criteria Manual Volume 3, Best Management Practice. Denver. Colorado. (2010). Accessed: Apr. 1, 2024. [Online]. Available: https://yosemite.epa.gov/oa/eab_web_docket.nsf/Attachments%20By%20ParentFilingId/AD542E028730375785257C5100567622/$FILE/EPA-BAFB-00001518.pdf
dc.relation/*ref*/Riverside County Flood Control and Water Conservation District. Low Impact Development Best Management Practice Design Handbook. United States. (2011). Accessed: Apr. 1, 2024. [Online]. Available: https://www.conservenorthtexas.org/item/Riverside-County-Flood-Control-and-Water-Conservat
dc.relation/*ref*/California Department of Transportation, Pervious Pavement Design Guidance. California. Estados Unidos. (2013). Accessed: Apr. 1, 2024. [Online]. Available: https://dot.ca.gov/-/media/dot-media/programs/design/documents/pervious-pavement-dg-dor.pdf
dc.relation/*ref*/L. M. Leming, H. R. Malcom, and D. P. Tennis, Hydrologic Design of Pervious Concrete, Portland Cement Association, Skokie, Illinois, and National Ready Mixed Concrete Association, Eds., Silver Spring, Maryland, USA: PCA, 2007, pp. 72. https://secement.org/wp-content/uploads/2016/02/EB303.pdf
dc.relation/*ref*/F. Leiva Villacorta. Nueva guía de diseño mecanística-empírica para estructuras de pavimento (vistazo a la guía 2002, proyecto nchrp i 37a). San Pedro. Costa Rica. (2006). Accessed: Apr. 1, 2024. [Online]. Available: https://www.lanamme.ucr.ac.cr/repositorio/bitstream/handle/50625112500/438/GUIA_DISENO_MECANISTICA_EMPIRICA.pdf?sequence=1&isAllowed=y
dc.relation/*ref*/B. K. Ferguson, Porous Pavements. Boca Raton, FL, USA: CRC Press, 2005. https://doi.org/10.1201/9781420038439
dc.relation/*ref*/H. Li, D. Jones, and J. Harvey, “Development of mechanistic–empirical design procedure for fully permeable pavement under heavy traffic,” Transp. Res. Rec., vol. 2305, no. 1, pp. 83–94, 2012. https://doi.org/10.3141/2305-09
dc.relation/*ref*/K. D. Hall, and C. W. Schwartz, “Development of structural design guidelines for porous asphalt pavement,” Transp. Res. Rec., vol. 2672, no. 40, pp. 197–206, Mar. 2018. https://doi.org/10.1177/0361198118758335
dc.relation/*ref*/P. Cárdenas, and J. Sebastián, “Evaluación de la capacidad de atenuación de flujos de escorrentía superficial de pavimentos permeables en cuencas con medias y altas pendientes” Tesis de maestría, Universidad Nacional de Colombia, 2024. https://repositorio.unal.edu.co/handle/unal/86721
dc.relation/*ref*/Resolución 330 de 2017. RAS 2017 Reglamento técnico del sector de agua potable y saneamiento Básico, Ministerio de Vivienda Ciudad y Territorio, Bogotá, Colombia, 2017. https://minvivienda.gov.co/normativa/resolucion-0330-2017-0
dc.relation/*ref*/C. J. Pratt, J. D. G. Mantle, and P. A. Schofield, “UK research into the performance of permeable pavement, reservoir structures in controlling stormwater discharge quantity and quality,” Water Sci. Technol., vol. 32, no. 1, pp. 63–69, 1995. https://doi.org/10.2166/wst.1995.0016
dc.relation/*ref*/B. T. Rushton, “Low-impact parking lot design reduces runoff and pollutant loads,” J. Water Resour. Plan. Manag., vol. 127, no. 3, pp. 172–179, 2001. https://doi.org/10.1061/(ASCE)0733-9496(2001)127:3(172)
dc.relation/*ref*/C. L. Abbott, and L. Comino-Mateos, “In‐situ hydraulic performance of a permeable pavement sustainable urban drainage system,” Water Environ. J., vol. 17, no. 3, pp. 187–190, Jul. 2003. https://doi.org/10.1111/j.1747-6593.2003.tb00460.x
dc.relation/*ref*/E. Zachary Bean, W. Frederick Hunt, and D. Alan Bidelspach, “Evaluation of four permeable pavement sites in eastern North Carolina for runoff reduction and water quality impacts,” J. Irrig. Drain. Eng., vol. 133, no. 6, pp. 583–592, 2007. https://programs.ifas.ufl.edu/media/programsifasufledu/shed/publications/2007-Bean-Evaluation-of-four-permeable-pavement-sites-in-Eastern-North-Carolina-for-runoff-reduction-and-water-quality-impacts.pdf
dc.relation/*ref*/L. Zanoni, A. Boysen, M. Carlson, and J. Harris “The Benefits of Using Porous Asphalt Pavement in Comparison with Other Forms of Pervious Pavements,” Degree thesis, University of Illinois at Chicago College of Engineering, 2018. https://www.il-asphalt.org/files/3715/4896/1291/Luke_Zanoni_2018_UIUCgo.pdf
dc.relation/*ref*/A. Singh, P. Vaddy, and K. P. Biligiri, “Quantification of embodied energy and carbon footprint of pervious concrete pavements through a methodical lifecycle assessment framework,” Resour. Conserv. Recycl., vol. 161, p. 104953, Oct. 2020. https://doi.org/10.1016/j.resconrec.2020.104953
dc.relation/*ref*/J. Zeng, G. Huang, Y. Mai, and W. Chen, “Optimizing the cost-effectiveness of low impact development (LID) practices using an analytical probabilistic approach,” Urban Water J., vol. 17, no. 2, pp. 136–143, 2020. https://doi.org/10.1080/1573062X.2020.1748208
dc.relation/*ref*/L. N. Antunes, E. Ghisi, and L. P. Thives, “Permeable pavements life cycle assessment: A literature review,” Water, vol. 10, no. 11, p. 1575, Nov. 2018. https://doi.org/10.3390/w10111575
dc.relation/*ref*/
dc.rightsDerechos de autor 2024 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 27 No. 61 (2024); e3165en-US
dc.sourceTecnoLógicas; Vol. 27 Núm. 61 (2024); e3165es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectaltas pendienteses-ES
dc.subjectciudades empinadases-ES
dc.subjectinundaciones pluvialeses-ES
dc.subjectpavimentos permeableses-ES
dc.subjectsistemas urbanos de drenaje sosteniblees-ES
dc.subjecthigh slopesen-US
dc.subjectsteep citiesen-US
dc.subjectstormwater floodsen-US
dc.subjectpermeable pavementsen-US
dc.subjectsustainable urban drainage systemsen-US
dc.titleAssessment of Permeable Pavements as a Technique to Mitigate Surface Runoff Peaksen-US
dc.titleEvaluación de pavimentos permeables como técnica para mitigar picos de escorrentía superficiales-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
3165-MPU-VF_v3.pdf
Tamaño:
1.14 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
2256-5337-teclo-27-61-e206.xml
Tamaño:
130.52 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
344278917012.epub
Tamaño:
1.39 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
3562.html
Tamaño:
154.88 KB
Formato:
Hypertext Markup Language