Finite Element Modeling of Direct Transition from Concrete Pavement to Asphalt Pavement

dc.creatorVargas-Díaz, Sergio Arturo
dc.date2022-11-18
dc.date.accessioned2025-10-01T23:52:49Z
dc.descriptionThe origin of premature distress in direct transitions from Portland cement concrete pavement (PCCP) to asphalt concrete pavement (ACP) constructed as part of TransMilenio pavement repairs has not been investigated and the related literature is limited, therefore, a three-dimensional finite element (FE) model was used to determine the mechanical responses of a direct ACP-PCCP transition under moving vehicular loading in order to identify failure mechanisms. In this sense, a PCCP model was validated with a falling-weight deflectometer (FWD) test, field measurements, and analytical solutions, then a concrete slab (CS) was replaced with flowable fill and asphalt concrete (AC) to create the direct ACP-PCCP transition. The direct transition model considered: 1) the viscoelastic nature of the AC; 2) non-uniform tire-pavement contact pressure; and 3) the bonding variation of the AC-concrete interface of the transition joint using different coefficients of friction (COF) and the Coulomb-type friction model. The results showed 1) relatively high near-surface shear strain of the AC, primarily at the joint and extending 122 mm from the joint; 2) relatively high compressive vertical strain on the subgrade top; and 3) high vertical differential displacement of the joint surface. It is concluded that the AC may prematurely experience near-surface cracking at the vicinity of the joint and rutting from the subgrade, however, increasing the AC-concrete interface bonding may be conservative for fatigue cracking and vertical differential displacement.en-US
dc.descriptionEl origen de daños prematuros en transiciones directas de pavimento de concreto asfáltico (PCA) a pavimento de concreto de cemento de Pórtland (PCCP) construidas como parte de las reparaciones del pavimento de TransMilenio no ha sido investigado y la literatura relacionada es limitada, por lo tanto, un modelo tridimensional de elementos finitos (EF) fue utilizado para determinar las respuestas mecánicas de una transición directa de pavimento de PCA-PCCP sometida a carga vehicular en movimiento con el fin de identificar mecanismos de falla. En este sentido, un modelo de PCCP fue validado con un ensayo de deflectómetro de impacto (FWD), mediciones de campo y soluciones analíticas, luego fue remplazada una losa de concreto (LC) por relleno fluido y concreto asfáltico (CA) para crear la transición directa de PCA-PCCP. El modelo de la transición directa consideró: 1) la naturaleza viscoelástica del CA; 2) presiones no uniformes de contacto llanta-pavimento; y 3) la variación de unión de la interfaz CA-concreto de la junta de transición mediante diferentes coeficientes de ficción (CF) y el modelo de fricción de tipo Coulomb. Los resultados mostraron 1) deformación cortante relativamente alta cerca de la superficie del CA, principalmente en la junta y extendida 122 mm desde la junta; 2) deformación vertical de compresión relativamente alta en la parte superior de la subrasante; y 3) alto desplazamiento diferencial vertical de la superficie de la junta. Se concluye que el CA podría experimentar prematuramente agrietamiento cerca de la superficie en inmediación de la junta y ahuellamiento desde la subrasante, no obstante, aumentar la unión de la interfaz CA-concreto puede ser conservativo para el agrietamiento por fatiga y desplazamiento diferencial vertical.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2389
dc.identifier10.22430/22565337.2389
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7839
dc.languageeng
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2389/2621
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2389/2627
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2389/2628
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2389/2638
dc.relation/*ref*/D. H. Chen and M. Won, “Field performance with state-of-the-art patching repair material,” Constr Build Mater, vol. 93, pp. 393–403, Sep. 2015, https://doi.org/10.1016/j.conbuildmat.2015.06.002
dc.relation/*ref*/Y. su Jung, D. G. Zollinger, and S. D. Tayabji, “Best Design and Construction Practices for Concrete Pavement Transition Areas,” Texas, USA, 2006. Accessed: Jan. 09, 2021. [Online]. Available: http://tti.tamu.edu/documents/0-5320-1.pdf
dc.relation/*ref*/California Department of Transportation, “Rigid Pavement,” California, USA, 2019. Accessed: Apr. 13, 2021. [Online]. Available: https://dot.ca.gov/programs/design/manual-highway-design-manual-hdm
dc.relation/*ref*/W. Zhou, M. Won, and P. Choi, “Performance Evaluation of Whitetopping with Improved Design Practices in Texas,” J Test Eval, vol. 47, no. 3, p. 20170665, May 2019, https://doi.org/10.1520/JTE20170665
dc.relation/*ref*/S. A. Vargas-Diaz and J. V. Acevedo-Pérez, “Consideraciones para el Análisis de Pavimento Flexible y Rígido Mediante Elementos Finitos con Aplicaciones de Abaqus,” Revista de Tecnología, vol. 18, no. 2, pp. 1-25, Sep. 2019, [Online]. Available: https://revistas.unbosque.edu.co/index.php/RevTec/article/view/4091
dc.relation/*ref*/M. A. Elseifi, J. Baek, and N. Dhakal, “Review of modelling crack initiation and propagation in flexible pavements using the finite element method,” International Journal of Pavement Engineering, vol. 19, no. 3, pp. 251–263, Mar. 2018, https://doi.org/10.1080/10298436.2017.1345555
dc.relation/*ref*/Y.-H. Cho, B. F. McCullough, and J. Weissmann, “Considerations on Finite-Element Method Application in Pavement Structural Analysis,” Transportation Research Record: Journal of the Transportation Research Board, vol. 1539, no. 1, pp. 96–101, Jan. 1996, https://doi.org/10.1177/0361198196153900113
dc.relation/*ref*/J. Kim and K. D. Hjelmstad, “Three-Dimensional Finite Element Analysis of Doweled Joints for Airport Pavements,” Transportation Research Record: Journal of the Transportation Research Board, vol. 1853, no. 1, pp. 100–109, Jan. 2003, https://doi.org/10.3141/1853-12
dc.relation/*ref*/M. Y. Riad, S. N. Shoukry, G. W. William, and M. R. Fahmy, “Effect of skewed joints on the performance of jointed concrete pavement through 3D dynamic finite element analysis,” International Journal of Pavement Engineering, vol. 10, no. 4, pp. 251–263, Aug. 2009, https://doi.org/10.1080/10298430701771783
dc.relation/*ref*/Y. Ma, H. Kim, I. Kim, and Y.-H. Cho, “Development of a mechanistic-empirical prediction model for joint spalling distress in concrete pavements,” Constr Build Mater, vol. 44, pp. 276–286, Jul. 2013, https://doi.org/10.1016/j.conbuildmat.2013.03.029
dc.relation/*ref*/Z. Leng, H. Ozer, I. L. Al-Qadi, and S. H. Carpenter, “Interface Bonding between Hot-Mix Asphalt and Various Portland Cement Concrete Surfaces: Laboratory Assessment,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2057, no. 1, pp. 46–53, Jan. 2008, https://doi.org/10.3141/2057-06
dc.relation/*ref*/H. Ozer, I. L. Al-Qadi, and Z. Leng, “Fracture-Based Friction Model for Pavement Interface Characterization,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2057, no. 1, pp. 54–63, Jan. 2008, https://doi.org/10.3141/2057-07
dc.relation/*ref*/H. Ozer, I. L. Al-Qadi, H. Wang, and Z. Leng, “Characterisation of interface bonding between hot-mix asphalt overlay and concrete pavements: modelling and in-situ response to accelerated loading,” International Journal of Pavement Engineering, vol. 13, no. 2, pp. 181–196, Apr. 2012, https://doi.org/10.1080/10298436.2011.596935
dc.relation/*ref*/P. J. Yoo, I. L. Al-Qadi, M. A. Elseifi, and I. Janajreh, “Flexible pavement responses to different loading amplitudes considering layer interface condition and lateral shear forces,” International Journal of Pavement Engineering, vol. 7, no. 1, pp. 73–86, Mar. 2006, https://doi.org/10.1080/10298430500516074
dc.relation/*ref*/J. Ling, F. Wei, H. Zhao, Y. Tian, B. Han, and Z. Chen, “Analysis of airfield composite pavement responses using full-scale accelerated pavement testing and finite element method,” Constr Build Mater, vol. 212, pp. 596–606, Jul. 2019, https://doi.org/10.1016/j.conbuildmat.2019.03.336
dc.relation/*ref*/Y. Seo and S.-M. Kim, “Longitudinal cracking at transverse joints caused by dowel bars in Jointed Concrete Pavements,” KSCE Journal of Civil Engineering, vol. 17, no. 2, pp. 395–402, Mar. 2013, https://doi.org/10.1007/s12205-013-2047-5
dc.relation/*ref*/J. A. Hernandez, A. Gamez, I. L. Al-Qadi, and M. de Beer, “Analytical Approach for Predicting Three-Dimensional Tire–Pavement Contact Load,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2456, no. 1, pp. 75–84, Jan. 2014, https://doi.org/10.3141/2456-08
dc.relation/*ref*/J. A. Hernandez and I. L. Al-Qadi, “Hyperelastic Modeling of Wide-Base Tire and Prediction of Its Contact Stresses,” J Eng Mech, vol. 142, no. 2, p. 4015084, Feb. 2016, https://doi.org/10.1061/(ASCE)EM.1943-7889.0001007
dc.relation/*ref*/M. Guo and X. Zhou, “Tire-Pavement Contact Stress Characteristics and Critical Slip Ratio at Multiple Working Conditions,” Advances in Materials Science and Engineering, vol. 2019, pp. 1–11, Aug. 2019, https://doi.org/10.1155/2019/5178516
dc.relation/*ref*/J. A. Hernandez and I. L. Al-Qadi, “Airfield Pavement Response Caused by Heavy Aircraft Takeoff: Advanced Modeling for Consideration of Wheel Interaction,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2471, no. 1, pp. 40–47, Jan. 2015, https://doi.org/10.3141/2471-06
dc.relation/*ref*/S.-M. Kim, M. K. Darabi, D. N. Little, and R. K. Abu Al-Rub, “Effect of the Realistic Tire Contact Pressure on the Rutting Performance of Asphaltic Concrete Pavements,” KSCE Journal of Civil Engineering, vol. 22, no. 6, pp. 2138–2146, Jun. 2018, https://doi.org/10.1007/s12205-018-4846-1
dc.relation/*ref*/I. L. Al-Qadi and P. J. Yoo, “Effect of surface tangential contact stresses on flexible pavement response,” in Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, 2007, vol. 76, pp. 663–692. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-49649086957&partnerID=40&md5=d8b8cac98703db35aec0044d54741826
dc.relation/*ref*/M. Keymanesh, M. M. Babaki, N. Shahriari, and A. Pirhadi, “Evaluating the Performance of Dowel in PCC Pavement of Roads using ABAQUS Finite Element Software,” International Journal of Transportation Engineering, vol. 5, no. 4, pp. 349–365, Oct. 2018, https://doi.org/10.22119/ijte.2018.47765
dc.relation/*ref*/A. E. Abu El-Maaty, G. M. Hekal, and E. M. Salah El-Din, “Modeling of Dowel Jointed Rigid Airfield Pavement under Thermal Gradients and Dynamic Loads,” Civil Engineering Journal, vol. 2, no. 2, pp. 38–51, Feb. 2016, https://doi.org/10.28991/cej-2016-00000011
dc.relation/*ref*/L. P. Priddy, J. D. Doyle, G. W. Flintsch, D. W. Pittman, and G. L. Anderton, “Three-dimensional modelling of precast concrete pavement repair joints,” Magazine of Concrete Research, vol. 67, no. 10, pp. 513–522, May 2015, https://doi.org/10.1680/macr.14.00278
dc.relation/*ref*/V. Sadeghi and S. Hesami, “Investigation of load transfer efficiency in jointed plain concrete pavements (JPCP) using FEM,” International Journal of Pavement Research and Technology, vol. 11, no. 3, pp. 245–252, May 2018, https://doi.org/10.1016/j.ijprt.2017.10.001
dc.relation/*ref*/G. A. Shafabakhsh, M. Vafaei, N. Amiri, and A. Famili, “Dynamic Effects of Moving Loads on the Jointed Plain Concrete Pavement Responses,” Engineering Journal, vol. 21, no. 5, pp. 137–144, Sep. 2017, https://doi.org/10.4186/ej.2017.21.5.137
dc.relation/*ref*/M. A. Elseifi, I. L. Al-Qadi, and P. J. Yoo, “Viscoelastic Modeling and Field Validation of Flexible Pavements,” J Eng Mech, vol. 132, no. 2, pp. 172–178, Feb. 2006, https://doi.org/10.1061/(ASCE)0733-9399(2006)132:2(172)
dc.relation/*ref*/P. J. Yoo and I. L. Al-Qadi, “The truth and myth of fatigue cracking potential in hot-mix asphalt: Numerical analysis and validation,” in Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, Apr. 2008, vol. 77, pp. 549–590. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-64549160292&partnerID=40&md5=d1fc85cbcdeb88d34388e2d03d227099
dc.relation/*ref*/P. J. Yoo and I. L. Al-Qadi, “Effect of Transient Dynamic Loading on Flexible Pavements,” Transportation Research Record: Journal of the Transportation Research Board, vol. 1990, no. 1, pp. 129–140, Jan. 2007, https://doi.org/10.3141/1990-15
dc.relation/*ref*/H. Wang and I. L. Al-Qadi, “Importance of Nonlinear Anisotropic Modeling of Granular Base for Predicting Maximum Viscoelastic Pavement Responses under Moving Vehicular Loading,” J Eng Mech, vol. 139, no. 1, pp. 29–38, Jan. 2013, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000465
dc.relation/*ref*/I. L. Al-Qadi, H. Wang, and E. Tutumluer, “Dynamic Analysis of Thin Asphalt Pavements by Using Cross-Anisotropic Stress-Dependent Properties for Granular Layer,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2154, no. 1, pp. 156–163, Jan. 2010, https://doi.org/10.3141/2154-16
dc.relation/*ref*/M. Kim, E. Tutumluer, and J. Kwon, “Nonlinear Pavement Foundation Modeling for Three-Dimensional Finite-Element Analysis of Flexible Pavements,” International Journal of Geomechanics, vol. 9, no. 5, pp. 195–208, Oct. 2009, https://doi.org/10.1061/(ASCE)1532-3641(2009)9:5(195)
dc.relation/*ref*/I. L. Al-Qadi, H. Wang, P. J. Yoo, and S. H. Dessouky, “Dynamic Analysis and in Situ Validation of Perpetual Pavement Response to Vehicular Loading,” Transportation Research Record: Journal of the Transportation Research Board, vol. 2087, no. 1, pp. 29–39, Jan. 2008, https://doi.org/10.3141/2087-04
dc.relation/*ref*/P. Liu, V. Ravee, D. Wang, and M. Oeser, “Study of the influence of pavement unevenness on the mechanical response of asphalt pavement by means of the finite element method,” Journal of Traffic and Transportation Engineering (English Edition), vol. 5, no. 3, pp. 169–180, Jun. 2018, https://doi.org/10.1016/j.jtte.2017.12.001
dc.relation/*ref*/A. González, “Resumen de fallas de losas sistema Transmilenio Autopista Norte y Avenida Caracas,” Sociedad Colombiana de Ingenieros. pp. 1–37, 2015. [Online]. Available: https://sci.org.co/troncal-caracas/
dc.relation/*ref*/M. Irfan, A. S. Waraich, S. Ahmed, and Y. Ali, “Characterization of Various Plant-Produced Asphalt Concrete Mixtures Using Dynamic Modulus Test,” Advances in Materials Science and Engineering, vol. 2016, pp. 1–12, 2016, https://doi.org/10.1155/2016/5618427
dc.relation/*ref*/Urban Development Institute, “Especificación técnica: mezclas asfálticas en caliente, densas, semidensas, gruesas, y de alto módulo,” 2011. Accessed: May. 08, 2021. [Online]. Available: https://www.idu.gov.co/web/content/7623/510-11.pdf
dc.relation/*ref*/L. Li et al., “Investigation of Prony series model related asphalt mixture properties under different confining pressures,” Constr Build Mater, vol. 166, pp. 147–157, Mar. 2018, https://doi.org/10.1016/j.conbuildmat.2018.01.120
dc.relation/*ref*/S. W. Park and R. A. Schapery, “Methods of interconversion between linear viscoelastic material functions. Part I—a numerical method based on Prony series,” Int J Solids Struct, vol. 36, no. 11, pp. 1653–1675, Apr. 1999, https://doi.org/10.1016/S0020-7683(98)00055-9
dc.relation/*ref*/J. Baek, “Modeling reflective cracking development in hot-mix asphalt overlays and quantification of control techniques,” p. 159, 2010, [Online]. Available: http://hdl.handle.net/2142/16021
dc.relation/*ref*/J. A. Hernandez, I. Al-Qadi, and M. de Beer, “Impact of Tire Loading and Tire Pressure on Measured 3D Contact Stresses,” in Airfield and Highway Pavement 2013, Jun. 2013, pp. 551–560. https://doi.org/10.1061/9780784413005.044
dc.relation/*ref*/University of the Andes, “Determinación del peso por eje de los buses articulados y buses alimentadores del sistema Transmilenio,” Bogotá, Colombia, 2004. Accessed: May. 14, 2021. [Online]. Available: https://www.idu.gov.co/web/content/7454/determinacion_peso_eje_buses_25nov14.pdf
dc.relation/*ref*/S. Caro, D. Castillo, and M. Sánchez-Silva, “Methodology for Modeling the Uncertainty of Material Properties in Asphalt Pavements,” Journal of Materials in Civil Engineering, vol. 26, no. 3, pp. 440–448, Mar. 2014, https://doi.org/10.1061/(ASCE)MT.1943-5533.0000841
dc.relation/*ref*/O. E. Gungor, I. L. Al-Qadi, A. Gamez, and J. A. Hernandez, “In-Situ Validation of Three-Dimensional Pavement Finite Element Models,” in The Roles of Accelerated Pavement Testing in Pavement Sustainability, L. G. Loría-Salazar, F. Leiva-Villacorta, J. P. Aguiar-Moya, and A. Vargas-Nordcbeck, Eds. Cham: Springer International Publishing, 2016, pp. 145–159. https://doi.org/10.1007/978-3-319-42797-3_10
dc.relation/*ref*/
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 25 No. 55 (2022); e2389en-US
dc.sourceTecnoLógicas; Vol. 25 Núm. 55 (2022); e2389es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectFalling-weight deflectometeren-US
dc.subjectpavement performanceen-US
dc.subjectfailure mechanismsen-US
dc.subjectfinite element modellingen-US
dc.subjectnon-uniform pressureen-US
dc.subjectDeflectómetro de impactoes-ES
dc.subjectdesempeño de pavimentoses-ES
dc.subjectmecanismos de fallaes-ES
dc.subjectmodelación de elementos finitoses-ES
dc.subjectpresiones no-uniformeses-ES
dc.titleFinite Element Modeling of Direct Transition from Concrete Pavement to Asphalt Pavementen-US
dc.titleModelación de elementos finitos de transición directa de pavimento asfáltico a pavimento de concretoes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
2389-MUP-VF.pdf
Tamaño:
1.46 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
344272383011_1.epub
Tamaño:
4.92 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
344272383011.xml
Tamaño:
129.17 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2638.html
Tamaño:
163.98 KB
Formato:
Hypertext Markup Language