Machine Learning Model for Primary Solar Resource Assessment in Colombia

dc.creatorObando Paredes, Edgar Darío
dc.date2023-12-29
dc.date.accessioned2025-10-01T23:53:10Z
dc.descriptionThis work introduces a Machine Learning (ML) model designed to predict solar radiation in diverse cities representing Colombia's climatic variability. It is crucial to assert that the amount of solar energy received in a specific region is directly related to solar radiation and its availability, which is influenced by each area's particular climatic and geographic conditions. Due to the high variability and resulting uncertainty, various approaches have been explored, including the use of numerical models to estimate solar radiation. The primary objective of this study was to develop and validate an ML model that accurately predicts solar radiation in cities. The methodology employed was specific to data treatment and ML model development. It was structured into three fundamental stages: clustering, estimation, and response, considering that the model is based on historical data. The obtained results were assessed using appropriate statistical definitions, not only determining the model's efficiency in terms of prediction but also considering interactions between data for the approximation and prediction of solar radiation. In this context, it is crucial to emphasize that the research contributes to understanding solar radiation in Colombia. This study underscores the importance of developing ML models to predict solar radiation, emphasizing the need to consider the country's climatic diversity. The results obtained, following the model's application, provide valuable information for comprehending and anticipating the availability of this primary resource.en-US
dc.descriptionEn este trabajo se presenta un modelo de Aprendizaje Automático (ML por sus siglas en inglés) diseñado para predecir la radiación solar en diversas ciudades que representan la variabilidad climática de Colombia. Destaca afirmar, que la cantidad de energía solar recibida en una región específica está directamente relacionada con la radiación solar y su disponibilidad, la cual se ve afectada por las condiciones climáticas y geográficas particulares de cada área. Ante la alta variabilidad e incertidumbre resultante, se han explorado diversos enfoques, entre ellos, el uso de modelos numéricos para estimar la radiación solar. El objetivo principal de este estudio fue desarrollar y validar un modelo ML que permita predecir con precisión la radiación solar en las ciudades. La metodología empleada fue propia del tratamiento de datos y desarrollo de modelos ML. Se estructuró en tres etapas fundamentales: agrupamiento, estimación y respuesta, al tener en cuenta que el modelo está estructurado con base en datos históricos. Los resultados obtenidos fueron evaluados mediante definiciones estadísticas apropiadas, que no solo determinaron la eficiencia del modelo en términos de predicción, sino que también consideraron las interacciones entre datos para la aproximación y predicción de la radiación solar. En este sentido, es crucial señalar que la investigación contribuye al entendimiento de la radiación solar en el contexto colombiano. Este estudio subraya la importancia de desarrollar modelos ML para predecir la radiación solar, destacando la necesidad de considerar la diversidad climática del país. Los resultados obtenidos, tras la aplicación del modelo, proporcionan información valiosa para comprender y anticipar la disponibilidad de este recurso primario.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2789
dc.identifier10.22430/22565337.2789
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7881
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2789/3003
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2789/3072
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2789/3073
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2789/3121
dc.relation/*ref*/R. Kent, “Renewables”, Plast. Eng., vol. 74, no. 9, pp. 56–57, Oct. 2018. https://doi.org/10.1002/peng.20026
dc.relation/*ref*/E. D. Obando, S. X. Carvajal, and J. Pineda Agudelo, “Solar Radiation Prediction Using Machine Learning Techniques: A Review,” IEEE Latin America Transactions, vol. 17, no. 04, pp. 684-697, Apr. 2019. https://doi.org/10.1109/TLA.2019.8891934
dc.relation/*ref*/S. Ren, Y. Hao, L. Xu, H. Wu, and N. Ba, “Digitalization and energy: How does internet development affect China’s energy consumption?,” Energy Econ., vol. 98, p.105220, Jun. 2021. https://doi.org/10.1016/j.eneco.2021.105220
dc.relation/*ref*/S. Few, P. Djapic, G. Strbac, J. Nelson, and C. Candelise, “Assessing local costs and impacts of distributed solar PV using high resolution data from across Great Britain,” Renewable Energy, vol. 162, pp. 1140–1150, Dec. 2020. https://doi.org/10.1016/j.renene.2020.08.025
dc.relation/*ref*/M. Alanazi, M. Mahoor, and A. Khodaei, “Co-optimization generation and transmission planning for maximizing large-scale solar PV integration,” International Journal of Electrical Power and Energy Systems, vol. 118, p. 105723, Jun. 2020. https://doi.org/10.1016/j.ijepes.2019.105723
dc.relation/*ref*/G. L. Camacho et al., “Plan Energético Nacional 2020-2050,” Unidad de Planeación Minero-Energética UPME, Accessed: Jun. 22, 2023. Available: https://www1.upme.gov.co/DemandayEficiencia/Documents/PEN_2020_2050/Plan_Energetico_Nacional_2020_2050.pdf
dc.relation/*ref*/A. Angstrom, “Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation,” Q. J. R. Meteorol. Soc., vol. 50, no. 210, pp. 121–126, Apr. 1924. https://doi.org/10.1002/qj.49705021008
dc.relation/*ref*/R. Aguiar, and M. Collares-Pereira, “TAG: A time-dependent, autoregressive, Gaussian model for generating synthetic hourly radiation,” Sol. Energy., vol. 49, no. 3, pp. 167–174, Sep. 1992. https://doi.org/https://doi.org/10.1016/0038-092X(92)90068-L
dc.relation/*ref*/R. Dogniaux, and M. Lemoine, “Classification of radiation sites in terms of different indices of atmospheric transparency,” in Solar Radiation Data, Dordrecht: Springer Netherlands, 1983, pp. 94–107. https://doi.org/https://doi.org/10.1007/978-94-009-7112-7_7
dc.relation/*ref*/K. K. Gopinathan, “A new model for estimating total solar radiation,” Solar & Wind Technology, vol. 5, no. 1, pp. 107–109, 1988. https://doi.org/https://doi.org/10.1016/0741-983X(88)90096-3
dc.relation/*ref*/M. R. Rietveld, “A new method for estimating the regression coefficients in the formula relating solar radiation to sunshine”, Agric. Meteorol., vol. 19, no. 2–3, pp. 243–252, Mar-Jun. 1978. https://doi.org/https://doi.org/10.1016/0002-1571(78)90014-6
dc.relation/*ref*/T. Khatib, A. Mohamed, and K. Sopian, “A review of solar energy modeling techniques”, Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 2864–2869, Jun. 2012. https://doi.org/10.1016/j.rser.2012.01.064
dc.relation/*ref*/L. Wang, O. Kisi, M. Zounemat-Kermani, G. A. Salazar, Z. Zhu, and W. Gong, “Solar radiation prediction using different techniques: Model evaluation and comparison,” Renewable and Sustainable Energy Reviews, vol. 61, pp. 384–397, Aug. 2016. https://doi.org/10.1016/j.rser.2016.04.024
dc.relation/*ref*/M.S. Mahmodian, R. Rahmani, E.Taslimi, and S. Mekhilef, “Step By Step Analyzing, Modeling and Simulation of Single and Double Array PV system in Different Environmental Variability,” 2012 International Conference on Future Environment and Energy IPCBEE, 2012, pp. 37–42, Available: https://eprints.um.edu.my/4719/
dc.relation/*ref*/M. Shravanth Vasisht, J. Srinivasan, and S. K. Ramasesha, “Performance of solar photovoltaic installations: Effect of seasonal variations,” Solar Energy, vol. 131, pp. 39–46, Jun. 2016. https://doi.org/10.1016/j.solener.2016.02.013
dc.relation/*ref*/IRENA, “Renewable Energy Highlights,” Agencia Internacional de las Energías Renovables, Emiratos Árabes Unidos, 2022. Available: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2022/Jul/IRENA_Renewable_energy_highlights_July_2022.pdf?rev=72ddf863ab3d48108f5ee28e72cd6d25&hash=161DACCC9D1F6E486B26477E52D97ECB
dc.relation/*ref*/J. A. Espinosa, S. Kaisler, F. Armour, and W. Money, “Big Data Redux: New Issues and Challenges Moving Forward,” Proceedings of the 52nd Hawaii International Conference on System Sciences, 2019. https://doi.org/10.24251/hicss.2019.131
dc.relation/*ref*/X. Zheng, X. Zou, and H. Liu, “Electrical performance comparison of a rooftop photovoltaic system and an open-rack photovoltaic system,” 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, China, 2017, pp. 3258-3261. https://doi.org/10.1109/CCDC.2017.7979068
dc.relation/*ref*/B. Dietrich, J. Walther, M. Weigold, and E. Abele, “Machine learning based very short term load forecasting of machine tools,” Appl Energy., vol. 276, p. 115440, Oct. 2020. https://doi.org/10.1016/j.apenergy.2020.115440
dc.relation/*ref*/C. L. Dewangan, S. N. Singh, and S. Chakrabarti, “Combining forecasts of day-ahead solar power,” Energy, vol. 202, p. 117743, Jul. 2020. https://doi.org/10.1016/j.energy.2020.117743
dc.relation/*ref*/C. Voyant et al., “Machine learning methods for solar radiation forecasting: A review,” Renewable Energy, vol. 105. pp. 569–582, May. 2017. https://doi.org/10.1016/j.renene.2016.12.095
dc.relation/*ref*/M. Diagne, M. David, P. Lauret, J. Boland, and N. Schmutz, “Review of solar irradiance forecasting methods and a proposition for small-scale insular grids”, Renew. Sustain. Energy Rev., vol. 27, pp. 65–76, Nov. 2013. https://doi.org/10.1016/j.rser.2013.06.042
dc.relation/*ref*/K. Benmouiza, and A. Cheknane, “Forecasting hourly global solar radiation using hybrid k -means and nonlinear autoregressive neural network models,” Energy Convers Manag., vol. 75, pp. 561–569, Nov. 2013. https://doi.org/10.1016/j.enconman.2013.07.003
dc.relation/*ref*/I. A. Ibrahim, and T. Khatib, “A novel hybrid model for hourly global solar radiation prediction using random forests technique and firefly algorithm,” Energy Convers Manag., vol. 138, pp. 413–425, Apr. 2017. https://doi.org/10.1016/j.enconman.2017.02.006
dc.relation/*ref*/W. Ji, and K. C. Chee, “Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN,” Solar Energy, vol. 85, no. 5, pp. 808–817, May. 2011. https://doi.org/10.1016/j.solener.2011.01.013
dc.relation/*ref*/J. Caballero-Peña, C. Cadena-Zarate, A. Parrado-Duque, and G. Osma-Pinto, “Distributed energy resources on distribution networks: A systematic review of modelling, simulation, metrics, and impacts,” International Journal of Electrical Power and Energy Systems, vol. 138. p. 107900, 2022. https://doi.org/10.1016/j.ijepes.2021.107900
dc.relation/*ref*/M. Sengupta, A. Habte, S. Wilbert, C. Gueymard, and J. Remund, “Best Practices Handbook for the Collection and Use of Solar Resource Data for Solar Energy Applications.,” 3rd Edition, Golden CO, 2021. https://www.nrel.gov/docs/fy21osti/77635.pdf
dc.relation/*ref*/M. Waseem, Z. Lin, S. Liu, Z. Zhang, T. Aziz, and D. Khan, “Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources,” Appl Energy., vol. 290, p. 116761, May 2021. https://doi.org/10.1016/j.apenergy.2021.116761
dc.relation/*ref*/L. Olatomiwa, S. Mekhilef, S. Shamshirband, K. Mohammadi, D. Petković, and C. Sudheer, “A support vector machine-firefly algorithm-based model for global solar radiation prediction,” Solar Energy, vol. 115, pp. 632–644, May 2015. https://doi.org/10.1016/j.solener.2015.03.015
dc.relation/*ref*/J. Fan, L. Wu, X. Ma, H. Zhou, and F. Zhang, “Hybrid support vector machines with heuristic algorithms for prediction of daily diffuse solar radiation in air-polluted regions,” Renew Energy, vol. 145, pp. 2034–2045, Jan. 2020. https://doi.org/10.1016/j.renene.2019.07.104
dc.relation/*ref*/X. Shao, S. Lu, and H. F. Hamann, "Solar radiation forecast with machine learning," 2016 23rd International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Kyoto, Japan, 2016, pp. 19-22. https://doi.org/10.1109/AM-FPD.2016.7543604
dc.relation/*ref*/J. Boland, M. David, and P. Lauret, “Short term solar radiation forecasting: Island versus continental sites,” Energy, vol. 113, pp. 186–192, Oct. 2016. https://doi.org/10.1016/j.energy.2016.06.139
dc.relation/*ref*/C. Voyant, G. Notton, C. Darras, A. Fouilloy, and F. Motte, “Uncertainties in global radiation time series forecasting using machine learning: The multilayer perceptron case,” Energy, vol. 125, pp. 248–257, Apr. 2017. https://doi.org/10.1016/j.energy.2017.02.098
dc.relation/*ref*/S. Mohseni, A. C. Brent, S. Kelly, and W. N. Browne, “Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review,” Renewable and Sustainable Energy Reviews, vol. 158, p. 112095, Apr. 2022. https://doi.org/10.1016/j.rser.2022.112095
dc.relation/*ref*/
dc.rightsDerechos de autor 2023 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 26 No. 58 (2023); e2789en-US
dc.sourceTecnoLógicas; Vol. 26 Núm. 58 (2023); e2789es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectAprendizaje automáticoes-ES
dc.subjectenergía renovablees-ES
dc.subjectmodelo predictivoes-ES
dc.subjectpredicción climáticaes-ES
dc.subjectradiación solares-ES
dc.subjectMachine learningen-US
dc.subjectrenewable energyen-US
dc.subjectpredictive modelen-US
dc.subjectclimate predictionen-US
dc.subjectsolar radiationen-US
dc.titleMachine Learning Model for Primary Solar Resource Assessment in Colombiaen-US
dc.titleModelo de aprendizaje automático para la evaluación del recurso solar primario en Colombiaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos