Bibliometric Analysis of the Effect of Light on Phycobiliproteins Production

dc.creatorVega Contreras , Nelson Alfonso
dc.creatorRivera Caicedo , Christian
dc.date2022-08-17
dc.date.accessioned2025-10-01T23:52:49Z
dc.descriptionThe purpose of the research is to make known the importance of the use of light as a mechanism of the utilization of microalgae for the production of phycobiliproteins, as a contribution to industrial biotechnology, which provides information on conditions and crop parameters, since several studies have shown that red light favors the growth of biomass, while red and blue wavelengths commonly promote the concentration and production of phycobiliproteins, which depends on the genus, species, strain, and environmental conditions, as well as their native conditions, since this mechanism is generated as an adaptive response, so it is necessary to investigate to understand these phenomena. The methodology was based on a documentary analysis through VOSviewer using the Web Of Science database, in which the words "Microalgae Pigment Light effect" were used which allowed us to conclude that there is a correlation of words focused on the production of biofuels, such as carotenoids, anthoxanthin, beta carotenes, and lutein, taking advantage of the use of light as a determining factor, taking into account that the strains that are most related to these studies are: Spirulina plantesis, Chrorella Vulgaris and chlamydomonas reinhardtii. The knowledge of the application of these pigments is wide, so the study of pigment production from microalgae evaluating the effect of light has become a topic of great interest, especially for the pigment market.en-US
dc.descriptionEn la actualidad, diversos estudios han demostrado que la luz roja favorece el crecimiento de la biomasa, mientras que, comúnmente, longitudes de ondas rojas y azules promueven la concentración y producción de ficobiliproteínas, lo cual depende del género o especie, y de las condiciones del medio, así como de sus condiciones nativas, pues este mecanismo se genera como respuesta de adaptación, por lo que se hace necesario indagar para comprender estos fenómenos. En este orden de ideas, el propósito de esta investigación fue dar a conocer la importancia del aprovechamiento de la luz, como mecanismo de utilización de las microalgas para la producción de ficobiliproteínas, como contribución a la biotecnología industrial, la cual brinda información sobre condiciones y parámetros cultivos. La metodología de estudio se basó en un análisis documental a través de VOSviewer, usando la base de datos Web of Science, en la cual se utilizaron las palabras “Microalgae Pigment Light effect”. Con base en lo anterior, se pudo determinar que existe una correlación de palabras enfocadas a la producción de biocombustibles, como carotenoides, antoxantina, betacarotenos y luteína, aprovechando el uso de la luz como factor determinante, teniendo en cuenta que las cepas que más se relacionan con estos estudios son: Spirulina plantesis, Chrorella vulgaris y Chlamydomonas reinhardtii. El conocimiento de la aplicación de estos pigmentos es amplio, por lo que el estudio de la producción de pigmentos a partir de microalgas, evaluando el efecto de la luz, se ha convertido en un tema de gran interés, en especial para el mercado de pigmentos.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2386
dc.identifier10.22430/22565337.2386
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7838
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2386/2515
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2386/2517
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2386/2518
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2386/2523
dc.relation/*ref*/G. I. Leal Medina et al., “Producción de Ácidos Grasos Poliinsaturados a partir de Biomasa Microalgal en un Cultivo Heterotrófico”, Rev. Ion Investig. Optim. Nuevos procesos Ing., vol. 30, no 1, pp. 91–103, 2017. https://revistas.uis.edu.co/index.php/revistaion/article/view/6447/6656http://dx.doi.org/10.18273/revion.v30n1-2017007
dc.relation/*ref*/R. J. Forero Trejos; R. Javier, “Aproximación a la problemática del manejo y tratamiento de las aguas residuales del corregimiento de Arauca (Palestina)”, (Trabajo de grado de Especialización), Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia, Manizales, 2007. https://repositorio.unal.edu.co/handle/unal/2608
dc.relation/*ref*/R. D. Candela Orduz, “Las microalgas y el tratamiento de aguas residuales: conceptos y aplicaciones. Una revisión bibliográfica”, (Monografía de grado para optar el título de Ingeniero Ambiental), Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente, Universidad Nacional Abierta y a Distancia, Bucaramanga, 2016. https://repository.unad.edu.co/handle/10596/12170
dc.relation/*ref*/Y. Chisti, “Microalgae biotechnology: A brief introduction”, en Handbook of Microalgae-Based Processes and Products, 2020, pp. 3–23. https://doi.org/10.1016/B978-0-12-818536-0.00001-4
dc.relation/*ref*/D. Kovač; O. Babić; I. Milovanović; A. Mišan; J. Simeunović, “The production of biomass and phycobiliprotein pigments in filamentous cyanobacteria: the impact of light and carbon sources”, Appl. Biochem. Microbiol., vol. 53, no 5, pp. 539–545, Sep. 2017. https://doi.org/10.1134/S000368381705009X
dc.relation/*ref*/M. R. Andrade; J. A. V. Costa, “Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate”, Aquaculture, vol. 264, no 1–4, pp. 130–134, Apr. 2007. https://doi.org/10.1016/j.aquaculture.2006.11.021
dc.relation/*ref*/W.-B. Kong; H. Yang; Y.-T. Cao; H. Song; S.-F. Hua; C.-G. Xia, “Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture”, Food Technol. Biotechnol, vol. 5, no. 1, pp. 62-69, 2013. https://www.ftb.com.hr/images/pdfarticles/2013/Vol.51_No.1/ftb_51-1_062-069.pdf
dc.relation/*ref*/D. A. Bryant; G. Guglielmi; N. T. de Marsac; A.-M. Castets; G. Cohen-Bazire, “The structure of cyanobacterial phycobilisomes: a model”, Arch. Microbiol., vol. 123, no 2, pp. 113–127, Nov. 1979. https://doi.org/10.1007/BF00446810
dc.relation/*ref*/J. Dagnino-Leone et al., “Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives”, Comput. Struct. Biotechnol. J., vol. 20, pp. 1506–1527, Dec. 2022. https://doi.org/10.1016/j.csbj.2022.02.016
dc.relation/*ref*/T. J. Ashaolu et al., “Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications”, Int. J. Biol. Macromol., vol. 193, no Pt B, pp. 2320–2331, 2021. https://doi.org/10.1016/j.ijbiomac.2021.11.064
dc.relation/*ref*/C. Rivera; L. Niño; G. Gelves, “Modeling of phycocyanin production from Spirulina platensis using different light-emitting diodes”, S. Afr. J. Chem. Eng., vol. 37, pp. 167–178, Jul. 2021. https://doi.org/10.1016/j.sajce.2021.05.005
dc.relation/*ref*/X. Guan; S. Qin; F. Zhao; X. Zhang; X. Tang, “Phycobilisomes linker family in cyanobacterial genomes: divergence and evolution”, Int. J. Biol. Sci., vol. 3, no 7, pp. 434–445, 2007. https://dx.doi.org/10.7150%2Fijbs.3.434
dc.relation/*ref*/M. Soja-Woźniak; S. Craig; S. Kratzer; B. Wojtasiewicz; M. Darecki; C. Jones, “A novel statistical approach for ocean colour estimation of inherent optical properties and Cyanobacteria abundance in optically complex waters”, Remote Sens. (Basel), vol. 9, no 4, p. 343, Apr. 2017. https://doi.org/10.3390/rs9040343
dc.relation/*ref*/M.-Y. Ho; F. Gan; G. Shen; C. Zhao; D. A. Bryant, “Far-red light photoacclimation (FaRLiP) in Synechococcus sp. PCC 7335: I. Regulation of FaRLiP gene expression”, Photosynth. Res., vol. 131, no 2, pp. 173–186, Feb. 2017. https://doi.org/10.1007/s11120-016-0309-z
dc.relation/*ref*/M. Edding; F. Tala; J. Vásquez, “Fotosíntesis, productividad y algas marinas,” en Fisiología Vegetal, Ediciones Universidad de La Serena, 2006, pp. 1–39. https://exa.unne.edu.ar/biologia/fisiologia.vegetal/fotosintesisy productividadyalgasmarinas.pdf
dc.relation/*ref*/G. Singh; S. K. Patidar, “Microalgae harvesting techniques: A review”, J. Environ. Manage., vol. 217, pp. 499–508, Jul. 2018. https://doi.org/10.1016/j.jenvman.2018.04.010
dc.relation/*ref*/M. R. Gauthier; G. N. A. Senhorinho; J. A. Scott, “Microalgae under environmental stress as a source of antioxidants”, Algal Res., vol. 52, p. 102104, Dec. 2020. https://doi.org/10.1016/j.algal.2020.102104
dc.relation/*ref*/L. C. Backer, “Cyanobacterial harmful algal blooms (CyanoHABs): Developing a public health response”, Lake Reserv. Manag., vol. 18, no 1, pp. 20–31, 2002. https://doi.org/10.1080/07438140209353926
dc.relation/*ref*/L. Li; L. Li; K. Song, “Remote sensing of freshwater cyanobacteria: An extended IOP Inversion Model of Inland Waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin”, Remote Sens. Environ., vol. 157, pp. 9–23, Feb. 2015. https://doi.org/10.1016/j.rse.2014.06.009
dc.relation/*ref*/I. R. Falconer, Cyanobacterial toxins of drinking water supplies. 1st Edition, Boca Ratón, FL, Estados Unidos de América, 2004. https://doi.org/10.1201/9780203022870
dc.relation/*ref*/G. A. Codd; I. Chorus; M. Burch, “Design of Monitoring Programmes,” en Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management, World Health Organization, 1999, pp. 1–15. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.169.8424&rep=rep1&type=pdf
dc.relation/*ref*/I. Levine; J. Fleurence, Microalgae in health and Disease Prevention. Londres, Inglaterra: Elsevier Science, 2018. https://www.elsevier.com/books/microalgae-in-health-and-disease-
dc.relation/*ref*/M. A. Borowitzka, “Biology of Microalgae”, en Microalgae in Health and Disease Prevention, Elsevier, 2018, pp. 23–72. https://doi.org/10.1016/B978-0-12-811405-6.00003-7
dc.relation/*ref*/R. Rajesh, “Exploring the sustainability performances of firms using environmental, social, and governance scores”, J. Clean. Prod., vol. 247, p. 119600, Feb. 2020. https://doi.org/10.1016/j.jclepro.2019.119600
dc.relation/*ref*/B. D. S. Lima; C. A. da Silva; M. N. Boin; R. B. Medeiros, “As paisagens e as dinâmicas territoriais na Serra de Maracaju, Mato Grosso do Sul, Brasil”, Cuad. Geogr. Rev. Colomb. Geogr., vol. 29, no 1, pp. 224–241, Ene. 2020. https://doi.org/10.15446/rcdg.v29n1.75016
dc.relation/*ref*/I. A. Borlongan; S. Suzuki; G. N. Nishihara; J. Kozono; R. Terada, “Effects of light quality and temperature on the photosynthesis and pigment content of a subtidal edible red alga Meristotheca papulosa (Solieriaceae, Gigartinales) from Japan”, J. Appl. Phycol., vol. 32, no 2, pp. 1329–1340, Feb. 2020. https://doi.org/10.1007/s10811-020-02045-z
dc.relation/*ref*/S. Sekar; M. Chandramohan, “Phycobiliproteins as a commodity: trends in applied research, patents and commercialization”, J. Appl. Phycol., vol. 20, no 2, pp. 113–136, Aug. 2007. https://doi.org/10.1007/s10811-007-9188-1
dc.relation/*ref*/A. G. Martínez Romero; J. M. Méndez Contreras; N. A. Vallejo Cantú, “Evaluación de la remoción de nitrógeno y fósforo contenidos en aguas residuales de origen porcícola por medio de Spirulina maxima y Chlorella spp”, (Tesis de Maestría), Instituto Tecnológico de Orizaba, Tecnológico Nacional de México, 2019. http://repositorios.orizaba.tecnm.mx:8080/xmlui/handle/123456789/291
dc.relation/*ref*/S. Kaur; J. I. S. Khattar; Y. Singh; D. P. Singh; A. S. Ahluwalia, “Extraction, purification and characterisation of Phycocyanin from Anabaena fertilissima PUPCCC 410.5: as a natural and food grade stable pigment”, J. Appl. Phycol., vol. 31, no 3, pp. 1685–1696, Jan. 2019. https://doi.org/10.1007/s10811-018-1722-9
dc.relation/*ref*/N. A. Vega Contreras; M. L. Torres Salazar, “Evaluacion De Compuestos Fenolicos De (Citrus sinensis) Y Su Capacidad Antioxidante”, Cienc. Desarr., vol. 12, no 2, Sep. 2021. https://doi.org/10.19053/01217488.v12.n2.2021.11635
dc.relation/*ref*/A. R. Grossman; D. Bhaya; Q. He, “Tracking the light environment by cyanobacteria and the dynamic nature of light harvesting”, J. Biol. Chem., vol. 276, no 15, pp. 11449–11452, 2001. https://doi.org/10.1074/jbc.R100003200
dc.relation/*ref*/I. de O Moreira et al., “Colour evaluation of a phycobiliprotein-rich extract obtained from Nostoc PCC9205 in acidic solutions and yogurt”, J. Sci. Food Agric., vol. 92, no 3, pp. 598–605, Feb. 2012. https://doi.org/10.1002/jsfa.4614
dc.relation/*ref*/I. N. Stadnichuk; I. V. Tropin, “Phycobiliproteins: Structure, functions and biotechnological applications”, Appl. Biochem. Microbiol., vol. 53, no 1, pp. 1–10, Feb. 2017. https://doi.org/10.1134/S0003683817010185
dc.relation/*ref*/X. Wang; P. Zhang; Y. Wu; L. Zhang, “Effect of light quality on growth, ultrastructure, pigments, and membrane lipids of Pyropia haitanensis”, J. Appl. Phycol., vol. 32, no 6, pp. 4189–4197, Oct. 2020. https://doi.org/10.1007/s10811-020-02264-4
dc.relation/*ref*/M. Corbella Morató; Z. S. D. Toa; G. Scholes; F. J. Luque; C. Curutchet, “Determination of the protonation preferences of bilin pigments in cryptophyte antenna complexes”, Phys. Chem., no. 33, Jul. 2018. https://doi.org/10.1039/C8CP02541J
dc.relation/*ref*/A. Gutu; A. D. Nesbit; A. J. Alverson; J. D. Palmer; D. M. Kehoe, “Unique role for translation initiation factor 3 in the light color regulation of photosynthetic gene expression”, Proc. Natl. Acad. Sci. U. S. A., vol. 110, no 40, pp. 16253–16258, Oct. 2013. https://doi.org/10.1073/pnas.1306332110
dc.relation/*ref*/A. Gutu; D. M. Kehoe, “Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria”, Mol. Plant, vol. 5, no 1, pp. 1–13, Jan. 2012. https://doi.org/10.1093/mp/ssr054
dc.relation/*ref*/A. R. Grossman, “A molecular understanding of complementary chromatic adaptation”, Photosynth. Res., vol. 76, no 1/3, pp. 207–215, Apr. 2003. https://doi.org/10.1023/A:1024907330878
dc.relation/*ref*/Y. Hirose et al., “Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in Cyanobacteria”, Mol. Plant, vol. 12, no 5, pp. 715–725, May. 2019. https://doi.org/10.1016/j.molp.2019.02.010
dc.relation/*ref*/M. Muramatsu; Y. Hihara, “Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses”, J. Plant Res., vol. 125, no 1, pp. 11–39, Oct. 2011. https://link.springer.com/article/10.1007/s10265-011-0454-6
dc.relation/*ref*/C. W. Mullineaux, “Electron transport and light-harvesting switches in cyanobacteria”, Front. Plant Sci., vol. 5, art. 7, p. 1-6, Jan. 2014. https://doi.org/10.3389/fpls.2014.00007
dc.relation/*ref*/L. B. Wiltbank; D. M. Kehoe, “Diverse light responses of cyanobacteria mediated by phytochrome superfamily photoreceptors”, Nat. Rev. Microbiol., vol. 17, no 1, pp. 37–50, Jan. 2019. https://www.nature.com/articles/s41579-018-0110-4
dc.relation/*ref*/G. Markou, “Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode”, Appl. Biochem. Biotechnol., vol. 172, no 5, pp. 2758–2768, Jan. 2014. https://link.springer.com/article/10.1007/s12010-014-0727-3
dc.relation/*ref*/D. da F. Prates; E. M. Radmann; J. H. Duarte; M. G. de Morais; J. A. V. Costa, “Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production”, Bioresour. Technol., vol. 256, pp. 38–43, May. 2018. https://doi.org/10.1016/j.biortech.2018.01.122
dc.relation/*ref*/B. L. Montgomery, “Seeing new light: recent insights into the occurrence and regulation of chromatic acclimation in cyanobacteria”, Curr. Opin. Plant Biol., vol. 37, pp. 18–23, Jun. 2017. https://doi.org/10.1016/j.pbi.2017.03.009
dc.relation/*ref*/V. M. Luimstra; J. M. Schuurmans; A. M. Verschoor; K. J. Hellingwerf; J. Huisman; H. C. P. Matthijs, “Blue light reduces photosynthetic efficiency of cyanobacteria through an imbalance between photosystems I and II”, Photosynth. Res., vol. 138, no 2, pp. 177–189, Jul. 2018. https://doi.org/10.1007/s11120-018-0561-5
dc.relation/*ref*/J. K. Kim; Y. Mao; G. Kraemer; C. Yarish, “Growth and pigment content of Gracilaria tikvahiae McLachlan under fluorescent and LED lighting”, Aquaculture, vol. 436, pp. 52–57, Jan. 2015. https://doi.org/10.1016/j.aquaculture.2014.10.037
dc.relation/*ref*/Y.-J. Dai et al., “Effect of light with different wavelengths on Nostoc flagelliforme cells in liquid culture”, J. Microbiol. Biotechnol., vol. 23, no 4, pp. 534–538, 2013. https://doi.org/10.4014/jmb.1205.05037
dc.relation/*ref*/Z. Khan; W. O. Wan Maznah; M. S. M. Faradina Merican; P. Convey; N. Najimudin; S. A. Alias, “A comparative study of phycobilliprotein production in two strains of Pseudanabaena isolated from Arctic and tropical regions in relation to different light wavelengths and photoperiods”, Polar Sci., vol. 20, part.1, pp. 3–8, Jun. 2019. https://doi.org/10.1016/j.polar.2018.10.002
dc.relation/*ref*/S. K. Ojit et al., “The response of phycobiliproteins to light qualities in Anabaena circinalis”, J. Appl. Biol. Biotechnol., vol. 34, no. 3, pp. 1-6, Jun. 2015. http://dx.doi.org/10.7324/JABB.2015.3301
dc.relation/*ref*/S. K. Mishra; A. Shrivastav; R. R. Maurya; S. K. Patidar; S. Haldar; S. Mishra, “Effect of light quality on the C-phycoerythrin production in marine cyanobacteria Pseudanabaena sp. isolated from Gujarat coast, India”, Protein Expr. Purif., vol. 81, no 1, pp. 5–10, Jan. 2012. https://doi.org/10.1016/j.pep.2011.08.011
dc.relation/*ref*/J. I. S. Khattar et al., “Hyperproduction of phycobiliproteins by the cyanobacterium Anabaena fertilissima PUPCCC 410.5 under optimized culture conditions”, Algal Res., vol. 12, pp. 463–469, Nov. 2015. https://doi.org/10.1016/j.algal.2015.10.007
dc.relation/*ref*/J. Park; T. B. Dinh, “Contrasting effects of monochromatic LED lighting on growth, pigments and photosynthesis in the commercially important cyanobacterium Arthrospira maxima”, Bioresour. Technol., vol. 291, p. 121846, Nov. 2019. https://doi.org/10.1016/j.biortech.2019.121846
dc.relation/*ref*/E. Kilimtzidi; S. Cuellar Bermudez; G. Markou; K. Goiris; D. Vandamme; K. Muylaert, “Enhanced phycocyanin and protein content of Arthrospiraby applying neutral density and red light shading filters: a small‐scale pilot experiment”, J. Chem. Technol. Biotechnol., vol. 94, no 6, pp. 2047–2054, Jun. 2019. https://doi.org/10.1002/jctb.5991
dc.relation/*ref*/H. A. Wicaksono; W. H. Satyantini; E. D. Masithah, “The spectrum of light and nutrients required to increase the production of phycocyanin Spirulina platensis,” IOP Conf. Ser. Earth Environ. Sci., vol. 236, p. 012008, Mar. 2019. https://doi.org/10.1088/1755-1315/236/1/012008
dc.relation/*ref*/H.-B. Chen et al., “Modeling on chlorophyll a and phycocyanin production by Spirulina platensis under various light-emitting diodes”, Biochem. Eng. J., vol. 53, no 1, pp. 52–56, Dec. 2010. https://doi.org/10.1016/j.bej.2010.09.004
dc.relation/*ref*/M. B. Bachchhav; M. V. Kulkarni; A. G. Ingale, “Enhanced Phycocyanin Production from Spirulina platensis using Light Emitting Diode”, J. Inst. Eng. (India) ser. E, vol. 98, no 1, pp. 41–45, Dec. 2016. https://doi.org/10.1007/s40034-016-0090-8
dc.relation/*ref*/P.-P. Han et al., “The regulation of photosynthetic pigments in terrestrial Nostoc flagelliforme in response to different light colors”, Algal Res., vol. 25, pp. 128–135, Jul. 2017. https://doi.org/10.1016/j.algal.2017.04.009
dc.relation/*ref*/A. Parmar; N. K. Singh; R. Dhoke; D. Madamwar, “Influence of light on phycobiliprotein production in three marine cyanobacterial cultures”, Acta Physiol. Plant, vol. 35, no 6, pp. 1817–1826, Jan. 2013. https://doi.org/10.1007/s11738-013-1219-8
dc.relation/*ref*/J. Silva Navas, “Modulación del sistema radicular en condiciones de estrés”, (Tesis Doctoral), Facultad de Ciencias Biológicas, Universidad Complutense, Madrid, 2016. https://eprints.ucm.es/id/eprint/36430/
dc.relation/*ref*/S. Kasiri; A. Ulrich; V. Prasad, “Kinetic modeling and optimization of carbon dioxide fixation using microalgae cultivated in oil-sands process water”, Chem. Eng. Sci., vol. 137, pp. 697–711, Dec. 2015. https://doi.org/10.1016/j.ces.2015.07.004
dc.relation/*ref*/R. Kandilian; A. Soulies; J. Pruvost; B. Rousseau; J. Legrand; L. Pilon, “Simple method for measuring the spectral absorption cross-section of microalgae”, Chem. Eng. Sci., vol. 146, pp. 357–368, Jun. 2016. https://doi.org/10.1016/j.ces.2016.02.039
dc.relation/*ref*/Q. Huang; L. Yao; T. Liu; J. Yang, “Simulation of the light evolution in an annular photobioreactor for the cultivation of Porphyridium cruentum”, Chem. Eng. Sci., vol. 84, pp. 718–726, Dec. 2012. https://doi.org/10.1016/j.ces.2012.09.017
dc.relation/*ref*/H.-P. Luo et al., “Analysis of photobioreactors for culturing high-value microalgae and cyanobacteria via an advanced diagnostic technique: CARPT”, Chem. Eng. Sci., vol. 58, no 12, pp. 2519–2527, Jun. 2003. https://doi.org/10.1016/S0009-2509(03)00098-8
dc.relation/*ref*/N. Yeh; J.-P. Chung, “High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation”, Renew. Sustain. Energy Rev., vol. 13, no 8, pp. 2175–2180, Oct. 2009. https://doi.org/10.1016/j.rser.2009.01.027
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 25 No. 54 (2022); e2386en-US
dc.sourceTecnoLógicas; Vol. 25 Núm. 54 (2022); e2386es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectChromaticityen-US
dc.subjectbiomassen-US
dc.subjectphycobilisomeen-US
dc.subjectphycocyaninen-US
dc.subjectmicroalgaeen-US
dc.subjectCromaticidades-ES
dc.subjectbiomasaes-ES
dc.subjectficobilisomaes-ES
dc.subjectficocianinaes-ES
dc.subjectmicroalgases-ES
dc.titleBibliometric Analysis of the Effect of Light on Phycobiliproteins Productionen-US
dc.titleAnálisis bibliométrico del efecto de la luz en la producción de ficobiliproteínases-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
revistatecnologicas_2386-MUP-VF.pdf
Tamaño:
607.17 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
ojsitm_344271354011_2.epub
Tamaño:
1.27 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
ojsitm_344271354011.xml
Tamaño:
133.2 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2523.html
Tamaño:
149.52 KB
Formato:
Hypertext Markup Language