A New Perspective on Energy Contagion in Colombia: Evidence from Wavelet Analysis and Co-Movement Dynamics

dc.creatorMeneses Cerón, Luis Angel
dc.creatorOrozco Álvarez, Jorge Eduardo
dc.creatorMosquera Muñoz, Juan Camilo
dc.creatorVélez Rivera, Víctor Manuel
dc.date2024-01-30
dc.date.accessioned2025-10-01T23:49:02Z
dc.descriptionPurpose: The aim of this study was to examine the existence of energy contagion from the most important energy indicators—oil, natural gas, and coal—to spot electricity prices in Colombia. Design/Methodology: The methodology employed here was correlational, with a quantitative approach. Daily data from February 2011 to December 2018 were used, excluding the 2008 financial crisis and the Covid-19 pandemic. The data were sourced from Refinitiv and XM. Wavelet analysis and co-movement dynamics were applied. Additionally, cross-correlation was used to analyze financial contagion from energy indicators to spot electricity prices. Findings: This study demonstrated that there are significant long-term correlations between energy indicators and spot electricity prices. It also determined the presence of energy contagion from natural gas and Brent crude oil to spot electricity prices during crisis periods. Regarding coal, there is no clear evidence of contagion. These findings are relevant for understanding how changes in the global energy market can affect electricity prices in the long term in an emerging economy like Colombia. Conclusions: Energy contagion impacts the global economy, especially in energy-dependent emerging markets. This study emphasizes the need to understand and mitigate risks in the energy market, offering key information to companies, investors, and policymakers. Originality: Advanced methods were employed here to analyze the impact of international fuel prices on the Colombian electricity market, identifying contagion periods and highlighting the vulnerability of emerging economies to changes in the global energy market.en-US
dc.descriptionObjetivo: examinar la existencia de contagio financiero energético desde los principales indicadores de desempeño energético: petróleo, gas natural y carbón sobre los precios spot de energía en Colombia. Diseño/metodología: la metodología empleada en este estudio fue de tipo correlacional, con un enfoque cuantitativo. Se emplearon datos diarios de febrero de 2011 a diciembre de 2018, excluyendo la crisis financiera de 2008 y la pandemia por COVID-19. Los datos provienen de Refinitiv y XM. Se aplicó el análisis de ondas (wavelets analysis) y dinámica de comovimientos (co-movimientos dynamics). Además, se utilizó la correlación cruzada para el análisis de contagio financiero entre los indicadores de desempeño energético y los precios spot de energía. Resultados: la investigación demostró que existen correlaciones significativas a largo plazo entre los indicadores de desempeño energético y los precios spot de energía. Además, determinó la presencia de contagio del gas natural y del petróleo brent sobre los precios spot de energía durante periodos de crisis. Con respecto al carbón, no hay evidencia clara de contagio. Estos hallazgos son relevantes para comprender cómo los cambios en el mercado global de la energía pueden afectar los precios de esta a largo plazo en una economía emergente como la colombiana. Conclusiones: el contagio financiero energético impacta la economía global, especialmente en mercados emergentes dependientes de energía. Este estudio resalta la necesidad de comprender y mitigar riesgos en el mercado energético, ofreciendo información clave para empresas, inversores y formuladores de políticas. Originalidad: se emplearon métodos avanzados para analizar el impacto de los precios internacionales de combustibles en el mercado energético colombiano, identificando periodos de contagio y subrayando la vulnerabilidad de economías emergentes frente a cambios en el mercado global de la energía.es-ES
dc.formatapplication/pdf
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/revista-cea/article/view/2578
dc.identifier10.22430/24223182.2578
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7113
dc.languagespa
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano - ITMes-ES
dc.relationhttps://revistas.itm.edu.co/index.php/revista-cea/article/view/2578/3031
dc.relationhttps://revistas.itm.edu.co/index.php/revista-cea/article/view/2578/3063
dc.relationhttps://revistas.itm.edu.co/index.php/revista-cea/article/view/2578/3171
dc.relationhttps://revistas.itm.edu.co/index.php/revista-cea/article/view/2578/3172
dc.relationhttps://revistas.itm.edu.co/index.php/revista-cea/article/view/2578/3272
dc.relation/*ref*/Algieri, B., & Leccadito, A. (2017). Assessing contagion risk from energy and non-energy commodity markets. Energy Economics, 62, 312-322. https://doi.org/10.1016/j.eneco.2017.01.006
dc.relation/*ref*/Bae, K.-H., Karolyi, G. A., & Stulz, R. M. (2003). A new approach to measuring financial contagion. The Review of Financial studies, 16(3), 717-763. https://doi.org/10.1093/rfs/hhg012
dc.relation/*ref*/Benhmad, F. (2013). Bull or bear markets: A wavelet dynamic correlation perspective. Economic Modelling, 32, 576-591. https://doi.org/10.1016/j.econmod.2013.02.031
dc.relation/*ref*/Belhassine, O., & Karamti, C. (2021). Volatility spillovers and hedging effectiveness between oil and stock markets: Evidence from a wavelet-based and structural breaks analysis. Energy Economics, 102, issue C, S0140988321003959. https://EconPapers.repec.org/RePEc:eee:eneeco:v:102:y:2021:i:c:s0140988321003959
dc.relation/*ref*/Boako, G., Alagidede, I. P., Sjo, B., & Uddin, G. S. (2020). Commodities price cycles and their interdependence with equity markets. Energy Economics, 91, 104884. https://doi.org/10.1016/j.eneco.2020.104884
dc.relation/*ref*/Boubaker, H., & Raza, S. A. (2017). A wavelet analysis of mean and volatility spillovers between oil and BRICS stock markets. Energy Economics, 64, 105-117. https://doi.org/10.1016/j.eneco.2017.01.026
dc.relation/*ref*/Briones Pinargote, C. J. (2023). Competitividad internacional del sector atunero: una aplicación al sector ecuatoriano. Interciencia, 48(4), 184-196. https://dialnet.unirioja.es/servlet/articulo?codigo=8946148
dc.relation/*ref*/Calvo, G. A., Leiderman, L., & Reinhart, C. M. (1996). Inflows of Capital to Developing Countries in the 1990s. Journal of Economic Perspectives, 10(2), 123-139. https://doi.org/10.1257/jep.10.2.123
dc.relation/*ref*/Cărăuşu, D. N., Filip, B. F., Cigu, E., & Toderaşcu, C. (2018). Contagion of Capital Markets in CEE Countries: Evidence from Wavelet Analysis. Emerging Markets Finance and Trade, 54(3), 618-641. https://doi.org/10.1080/1540496X.2017.1410129
dc.relation/*ref*/Centeno, M. A., Nag, M., Patterson, T. S., Shaver, A., & Windawi, A. J. (2015). The emergence of global systemic risk. Annual Review of Sociology, 41, 65-85. https://doi.org/10.1146/annurev-soc-073014-112317
dc.relation/*ref*/Chakraborty, U. K. (2008). Advances Differential Evolution. Springer.
dc.relation/*ref*/Dash, S. R., & Maitra, D. (2019). The relationship between emerging and developed market sentiment: A wavelet-based time-frequency analysis. Journal of Behavioral and Experimental Finance, 22, 135-150. https://doi.org/10.1016/j.jbef.2019.02.006
dc.relation/*ref*/Díaz, G., Coto, J., & Gómez-Aleixandre, J. (2019). Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression. Applied Energy, 239, 610-625. https://doi.org/10.1016/j.apenergy.2019.01.213
dc.relation/*ref*/Dornbusch, R., Park, Y. C., & Claessens, S. (2000). Contagion: Understanding How It Spreads. The World Bank Research Observer, 15(2), 177-197. https://doi.org/10.1093/wbro/15.2.177
dc.relation/*ref*/Eichengreen, B., Rose, A. K., & Wyplosz, C. (1999). Contagious Currency Crises. National Bureau of Economic Research, 29-56. https://doi.org/10.3386/w5681
dc.relation/*ref*/Fang, S., & Egan, P. (2018). Measuring contagion effects between crude oil and Chinese stock market sectors. The Quarterly Review of Economics and Finance, 68, 31-38. https://doi.org/10.1016/j.qref.2017.11.010
dc.relation/*ref*/Fernández-Macho, J. (2018). Time-localized wavelet multiple regression and correlation. Physica A: Statistical Mechanics and its Applications, 492, 1226-1238. https://doi.org/10.1016/j.physa.2017.11.050
dc.relation/*ref*/Ftiti, Z., & Hadhri, S. (2019). Can economic policy uncertainty, oil prices, and investor sentiment predict Islamic stock returns? A multi-scale perspective. Pacific-Basin Finance Journal, 53, issue C, 40-55. https://EconPapers.repec.org/RePEc:eee:pacfin:v:53:y:2019:i:c:p:40-55
dc.relation/*ref*/Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: Measuring stock market comovements. The Journal of Finance, 57(5), 2223-2261. https://doi.org/10.1111/0022-1082.00494
dc.relation/*ref*/Fry, R., Martin, V. L., & Tang, C. (2010). A new class of tests of contagion with applications. Journal of Business y Economic Statistics, 28(3), 423-437. https://doi.org/10.1198/jbes.2010.06060
dc.relation/*ref*/Fry-McKibbin, R., Hsiao, C.-L., & Tang, C. (2014). Contagion and global financial crises: lessons from nine crisis episodes. Open Economies Review, 25(3), 521-570. https://doi.org/10.1007/s11079-013-9289-1
dc.relation/*ref*/Fry-McKibbin, R., & Hsiao, C. Y-L. (2018). Extremal dependence tests for contagion. Econometric Reviews, 37(6), 626-649. https://doi.org/10.1080/07474938.2015.1122270
dc.relation/*ref*/Gallegati, M. (2012). A wavelet-based approach to test for financial market contagion. Computational Statistics y Data Analysis, 56(11), 3491-3497. https://doi.org/10.1016/j.csda.2010.11.003
dc.relation/*ref*/Garcia, J., & Pérez-Libreros, A. F. (2019). El precio spot de la electricidad y la inclusión de energía renovable no convencional: evidencia para Colombia. SSRN. http://dx.doi.org/10.2139/ssrn.3443910
dc.relation/*ref*/Ghorbel, A., & Boujelbene, Y. (2013). Contagion effect of the oil shock and US financial crisis on the GCC and BRIC countries. International Journal of Energy Sector Management, 7(4), 430-447. https://doi.org/10.1108/IJESM-04-2012-0002
dc.relation/*ref*/Ghosh, I., Sanyal, M. K., & Jana, R. K. (2020). Co-movement and Dynamic Correlation of Financial and Energy Markets: An Integrated Framework of Nonlinear Dynamics, Wavelet Analysis and DCC-GARCH. Computational Economics, 57, 503–527. https://doi.org/10.1007/s10614-019-09965-0
dc.relation/*ref*/Grubel, H. G., & Fadner, K. (1971). The interdependence of international equity markets. The Journal of Finance, 26(1), 89-94. https://doi.org/10.1111/j.1540-6261.1971.tb00591.x
dc.relation/*ref*/Guesmi, K., Abid, I., Creti, A., & Chevallier, J. (2018). Oil Price Risk and Financial Contagion. The Energy Journal, 39(2). https://doi.org/10.5547/01956574.39.SI2.kgue
dc.relation/*ref*/Hamdi, B., Aloui, M., Alqahtani, F., & Tiwari, A. (2019). Relationship between the oil price volatility and sectoral stock markets in oil-exporting economies: Evidence from wavelet nonlinear denoised based quantile and Granger-causality analysis. Energy Economics, 80, 536-552. https://doi.org/10.1016/j.eneco.2018.12.021
dc.relation/*ref*/Hergety, S. W. (2012). Exchange market pressure, commodity prices, and contagion in Latin America. The Journal of International Trade & Economic Development, 23(1), 56-77. https://doi.org/10.1080/09638199.2012.679292
dc.relation/*ref*/Hong, Y., Tu, J., & Zhou, G. (2007). Asymmetries in Stock Returns: Statistical Tests and Economic Evaluation. The Review of Financial Studies, 20(5), 1547-1581. https://doi.org/10.1093/rfs/hhl037
dc.relation/*ref*/Kaminsky, G. L., & Reinhart, C. M. (2000). On crises, contagion, and confusion. Journal of International Economics, 51(1), 145-168. https://doi.org/10.1016/S0022-1996(99)00040-9
dc.relation/*ref*/Kilian, L., & Vigfusson, R.J. (2011). Are the responses of the U.S. economy asymmetric in energy price increases and decreases? Quantitative Economics, 2, 419-453. https://doi.org/10.3982/QE99
dc.relation/*ref*/Lahmiri, S., Uddin, G. S., & Bekiros, S. (2017). Clustering of short and long-term co-movements in international financial and commodity markets in wavelet domain. Physica A: Statistical Mechanics and its Applications, 486, 947-955. https://doi.org/10.1016/j.physa.2017.06.012
dc.relation/*ref*/Li, J., Xie, C., & Long, H. (2019). The roles of inter-fuel substitution and inter-market contagion in driving energy prices: Evidences from China’s coal market. Energy Economics, 84, 104525. https://doi.org/10.1016/j.eneco.2019.104525
dc.relation/*ref*/Lin, L., Kuang, Y., Jiang, Y., & Su, X. (2019). Assessing risk contagion among the Brent crude oil market, London gold market and stock markets: Evidence based on a new wavelet decomposition approach. The North American Journal of Economics and Finance, 50, 101035. https://doi.org/10.1016/j.najef.2019.101035
dc.relation/*ref*/Lunde, A., & Timmermann, A. (2004). Duration dependence in stock prices: An analysis of bull and bear markets. Journal of Business & Economic Statistics, 22(3), 253-273. https://doi.org/10.1198/073500104000000136
dc.relation/*ref*/Mahadeo, S. M. R., Heinlein, R., & Legrenzi, G. D. (2019). Energy contagion analysis: A new perspective with application to a small petroleum economy. Energy Economics, 80, 890-903. https://doi.org/10.1016/j.eneco.2019.02.007
dc.relation/*ref*/Mensi, W., Ur Rehman, M., Al-Yahyaee, K. H., & Vo, X. V. (2023). Frequency dependence between oil futures and international stock markets and the role of gold, bonds, and uncertainty indices: Evidence from partial and multivariate wavelet approaches. Resources Policy, 80, 103161. https://doi.org/10.1016/j.resourpol.2022.103161
dc.relation/*ref*/Pagan, A. R., & Sossounov, K. A. (2003). A simple framework for analysing bull and bear markets. Journal Applied Econometrics, 18(1), 511-532. https://doi.org/10.1002/jae.664
dc.relation/*ref*/Pan, Z., Zheng, X., & Gong, Y. (2015). A model-free test for contagion between crude oil and stock markets. Economics Letters, 130, 1-4. https://doi.org/10.1016/j.econlet.2015.02.023
dc.relation/*ref*/Pericoli, M., & Sbracia, M. (2003). A Primer on Financial Contagion. Journal of Economic Surveys, 17(4), 571-608. https://doi.org/10.1111/1467-6419.00205
dc.relation/*ref*/Ranta, M. (2013). Contagion among major world markets: a wavelet approach. International Journal of Managerial Finance, 9(2), 133-149. http://dx.doi.org/10.1108/17439131311307556
dc.relation/*ref*/Reboredo, J. C., & Rivera-Castro, M. A. (2013). A wavelet decomposition approach to crude oil price and exchange rate dependence. Economic Modelling, 32, 42-57. https://doi.org/10.1016/j.econmod.2012.12.028
dc.relation/*ref*/Reboredo, J. C., & Rivera-Castro, M. A. (2014). Wavelet-based evidence of the impact of oil prices on stock returns. International Review of Economics & Finance, 29, 145-176. https://doi.org/10.1016/j.iref.2013.05.014
dc.relation/*ref*/Roy, A., Anchal, S., & Soudeep, D. (2023). A wavelet-based methodology to compare the impact of pandemic versus Russia–Ukraine conflict on crude oil sector and its interconnectedness with other energy and non-energy markets. Energy Economics, 124, 106830. https://doi.org/10.1016/j.eneco.2023.106830
dc.relation/*ref*/Samarakoon, L. P. (2011). Stock market interdependence, contagion, and the U.S. financial crisis: The case of emerging and frontier markets. Journal of International Financial Markets, Institutions and Money, 21(5), 724-742. https://doi.org/10.1016/j.intfin.2011.05.001
dc.relation/*ref*/Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x
dc.relation/*ref*/Shrestha, K., Subramaniam, R., Peranginangin, Y., y Philip, S. S. S. (2018). Quantile hedge ratio for energy markets. Energy Economics, 71, 253-272. https://doi.org/10.1016/j.eneco.2018.02.020
dc.relation/*ref*/Uribe, J. (2011). Contagio financiero: una metodología para su evaluación mediante coeficientes de dependencia asintótica. Lecturas de Economía, (75), 29-57. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-25962011000200003&lng=en&tlng=es
dc.relation/*ref*/Wen, X., Wei, Y., & Huang, D. (2012). Measuring contagion between energy market and stock market during financial crisis: A copula approach. Energy Economics, 34(5), 1435-1446. https://doi.org/10.1016/j.eneco.2012.06.021
dc.relation/*ref*/XM. (s.f.). Precio de bolsa y escasez. https://www.xm.com.co/transacciones/cargo-por-confiabilidad/precio-de-bolsa-y-escasez
dc.relation/*ref*/Zhao, Z., Wen, H., & Li, K. (2021). Identifying bubbles and the contagion effect between oil and stock markets: New evidence from China. Economic Modelling 94, 780-788. https://doi.org/10.1016/j.econmod.2020.02.018
dc.relation/*ref*/Zhou, Z., Lin, L., & Li, S. (2018). International stock market contagion: A CEEMDAN wavelet analysis. Economic Modelling, 72, 333-352. https://doi.org/10.1016/j.econmod.2018.02.010
dc.relation/*ref*/Zhu, H., Wu, H., Ren, Y., & Yu, D. (2022). Time-frequency effect of investor sentiment, economic policy uncertainty, and crude oil on international stock markets: evidence from wavelet quantile analysis. Applied Economics, 54(53), 6116-6146. https://doi.org/10.1080/00036846.2022.2057912
dc.rightsDerechos de autor 2023 Luis Angel Meneses Cerón, Jorge Eduardo Orozco Álvarez, Juan Camilo Mosquera Muñoz, Víctor Manuel Vélez Riveraes-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceRevista CEA; Vol. 10 No. 22 (2024); e2578en-US
dc.sourceRevista CEA; Vol. 10 Núm. 22 (2024); e2578es-ES
dc.source2422-3182
dc.source2390-0725
dc.subjectcontagio financiero energéticoes-ES
dc.subjectcomovimientoses-ES
dc.subjectanálisis de ondases-ES
dc.subjectprecio spot de energíaes-ES
dc.subjectmercado global de energíaes-ES
dc.subjectenergy contagionen-US
dc.subjectco-movementsen-US
dc.subjectwavelet analysisen-US
dc.subjectelectricity spot priceen-US
dc.subjectglobal energy marketen-US
dc.titleA New Perspective on Energy Contagion in Colombia: Evidence from Wavelet Analysis and Co-Movement Dynamicsen-US
dc.titleUna nueva perspectiva del contagio financiero energético en Colombia: evidencia del análisis de ondas y dinámicas de comovimientoses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Archivos