A New Perspective on Energy Contagion in Colombia: Evidence from Wavelet Analysis and Co-Movement Dynamics
dc.creator | Meneses Cerón, Luis Angel | |
dc.creator | Orozco Álvarez, Jorge Eduardo | |
dc.creator | Mosquera Muñoz, Juan Camilo | |
dc.creator | Vélez Rivera, Víctor Manuel | |
dc.date | 2024-01-30 | |
dc.date.accessioned | 2025-10-01T23:49:02Z | |
dc.description | Purpose: The aim of this study was to examine the existence of energy contagion from the most important energy indicators—oil, natural gas, and coal—to spot electricity prices in Colombia. Design/Methodology: The methodology employed here was correlational, with a quantitative approach. Daily data from February 2011 to December 2018 were used, excluding the 2008 financial crisis and the Covid-19 pandemic. The data were sourced from Refinitiv and XM. Wavelet analysis and co-movement dynamics were applied. Additionally, cross-correlation was used to analyze financial contagion from energy indicators to spot electricity prices. Findings: This study demonstrated that there are significant long-term correlations between energy indicators and spot electricity prices. It also determined the presence of energy contagion from natural gas and Brent crude oil to spot electricity prices during crisis periods. Regarding coal, there is no clear evidence of contagion. These findings are relevant for understanding how changes in the global energy market can affect electricity prices in the long term in an emerging economy like Colombia. Conclusions: Energy contagion impacts the global economy, especially in energy-dependent emerging markets. This study emphasizes the need to understand and mitigate risks in the energy market, offering key information to companies, investors, and policymakers. Originality: Advanced methods were employed here to analyze the impact of international fuel prices on the Colombian electricity market, identifying contagion periods and highlighting the vulnerability of emerging economies to changes in the global energy market. | en-US |
dc.description | Objetivo: examinar la existencia de contagio financiero energético desde los principales indicadores de desempeño energético: petróleo, gas natural y carbón sobre los precios spot de energía en Colombia. Diseño/metodología: la metodología empleada en este estudio fue de tipo correlacional, con un enfoque cuantitativo. Se emplearon datos diarios de febrero de 2011 a diciembre de 2018, excluyendo la crisis financiera de 2008 y la pandemia por COVID-19. Los datos provienen de Refinitiv y XM. Se aplicó el análisis de ondas (wavelets analysis) y dinámica de comovimientos (co-movimientos dynamics). Además, se utilizó la correlación cruzada para el análisis de contagio financiero entre los indicadores de desempeño energético y los precios spot de energía. Resultados: la investigación demostró que existen correlaciones significativas a largo plazo entre los indicadores de desempeño energético y los precios spot de energía. Además, determinó la presencia de contagio del gas natural y del petróleo brent sobre los precios spot de energía durante periodos de crisis. Con respecto al carbón, no hay evidencia clara de contagio. Estos hallazgos son relevantes para comprender cómo los cambios en el mercado global de la energía pueden afectar los precios de esta a largo plazo en una economía emergente como la colombiana. Conclusiones: el contagio financiero energético impacta la economía global, especialmente en mercados emergentes dependientes de energía. Este estudio resalta la necesidad de comprender y mitigar riesgos en el mercado energético, ofreciendo información clave para empresas, inversores y formuladores de políticas. Originalidad: se emplearon métodos avanzados para analizar el impacto de los precios internacionales de combustibles en el mercado energético colombiano, identificando periodos de contagio y subrayando la vulnerabilidad de economías emergentes frente a cambios en el mercado global de la energía. | es-ES |
dc.format | application/pdf | |
dc.format | application/pdf | |
dc.format | application/zip | |
dc.format | text/xml | |
dc.format | text/html | |
dc.identifier | https://revistas.itm.edu.co/index.php/revista-cea/article/view/2578 | |
dc.identifier | 10.22430/24223182.2578 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12622/7113 | |
dc.language | spa | |
dc.language | eng | |
dc.publisher | Instituto Tecnológico Metropolitano - ITM | es-ES |
dc.relation | https://revistas.itm.edu.co/index.php/revista-cea/article/view/2578/3031 | |
dc.relation | https://revistas.itm.edu.co/index.php/revista-cea/article/view/2578/3063 | |
dc.relation | https://revistas.itm.edu.co/index.php/revista-cea/article/view/2578/3171 | |
dc.relation | https://revistas.itm.edu.co/index.php/revista-cea/article/view/2578/3172 | |
dc.relation | https://revistas.itm.edu.co/index.php/revista-cea/article/view/2578/3272 | |
dc.relation | /*ref*/Algieri, B., & Leccadito, A. (2017). Assessing contagion risk from energy and non-energy commodity markets. Energy Economics, 62, 312-322. https://doi.org/10.1016/j.eneco.2017.01.006 | |
dc.relation | /*ref*/Bae, K.-H., Karolyi, G. A., & Stulz, R. M. (2003). A new approach to measuring financial contagion. The Review of Financial studies, 16(3), 717-763. https://doi.org/10.1093/rfs/hhg012 | |
dc.relation | /*ref*/Benhmad, F. (2013). Bull or bear markets: A wavelet dynamic correlation perspective. Economic Modelling, 32, 576-591. https://doi.org/10.1016/j.econmod.2013.02.031 | |
dc.relation | /*ref*/Belhassine, O., & Karamti, C. (2021). Volatility spillovers and hedging effectiveness between oil and stock markets: Evidence from a wavelet-based and structural breaks analysis. Energy Economics, 102, issue C, S0140988321003959. https://EconPapers.repec.org/RePEc:eee:eneeco:v:102:y:2021:i:c:s0140988321003959 | |
dc.relation | /*ref*/Boako, G., Alagidede, I. P., Sjo, B., & Uddin, G. S. (2020). Commodities price cycles and their interdependence with equity markets. Energy Economics, 91, 104884. https://doi.org/10.1016/j.eneco.2020.104884 | |
dc.relation | /*ref*/Boubaker, H., & Raza, S. A. (2017). A wavelet analysis of mean and volatility spillovers between oil and BRICS stock markets. Energy Economics, 64, 105-117. https://doi.org/10.1016/j.eneco.2017.01.026 | |
dc.relation | /*ref*/Briones Pinargote, C. J. (2023). Competitividad internacional del sector atunero: una aplicación al sector ecuatoriano. Interciencia, 48(4), 184-196. https://dialnet.unirioja.es/servlet/articulo?codigo=8946148 | |
dc.relation | /*ref*/Calvo, G. A., Leiderman, L., & Reinhart, C. M. (1996). Inflows of Capital to Developing Countries in the 1990s. Journal of Economic Perspectives, 10(2), 123-139. https://doi.org/10.1257/jep.10.2.123 | |
dc.relation | /*ref*/Cărăuşu, D. N., Filip, B. F., Cigu, E., & Toderaşcu, C. (2018). Contagion of Capital Markets in CEE Countries: Evidence from Wavelet Analysis. Emerging Markets Finance and Trade, 54(3), 618-641. https://doi.org/10.1080/1540496X.2017.1410129 | |
dc.relation | /*ref*/Centeno, M. A., Nag, M., Patterson, T. S., Shaver, A., & Windawi, A. J. (2015). The emergence of global systemic risk. Annual Review of Sociology, 41, 65-85. https://doi.org/10.1146/annurev-soc-073014-112317 | |
dc.relation | /*ref*/Chakraborty, U. K. (2008). Advances Differential Evolution. Springer. | |
dc.relation | /*ref*/Dash, S. R., & Maitra, D. (2019). The relationship between emerging and developed market sentiment: A wavelet-based time-frequency analysis. Journal of Behavioral and Experimental Finance, 22, 135-150. https://doi.org/10.1016/j.jbef.2019.02.006 | |
dc.relation | /*ref*/Díaz, G., Coto, J., & Gómez-Aleixandre, J. (2019). Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression. Applied Energy, 239, 610-625. https://doi.org/10.1016/j.apenergy.2019.01.213 | |
dc.relation | /*ref*/Dornbusch, R., Park, Y. C., & Claessens, S. (2000). Contagion: Understanding How It Spreads. The World Bank Research Observer, 15(2), 177-197. https://doi.org/10.1093/wbro/15.2.177 | |
dc.relation | /*ref*/Eichengreen, B., Rose, A. K., & Wyplosz, C. (1999). Contagious Currency Crises. National Bureau of Economic Research, 29-56. https://doi.org/10.3386/w5681 | |
dc.relation | /*ref*/Fang, S., & Egan, P. (2018). Measuring contagion effects between crude oil and Chinese stock market sectors. The Quarterly Review of Economics and Finance, 68, 31-38. https://doi.org/10.1016/j.qref.2017.11.010 | |
dc.relation | /*ref*/Fernández-Macho, J. (2018). Time-localized wavelet multiple regression and correlation. Physica A: Statistical Mechanics and its Applications, 492, 1226-1238. https://doi.org/10.1016/j.physa.2017.11.050 | |
dc.relation | /*ref*/Ftiti, Z., & Hadhri, S. (2019). Can economic policy uncertainty, oil prices, and investor sentiment predict Islamic stock returns? A multi-scale perspective. Pacific-Basin Finance Journal, 53, issue C, 40-55. https://EconPapers.repec.org/RePEc:eee:pacfin:v:53:y:2019:i:c:p:40-55 | |
dc.relation | /*ref*/Forbes, K. J., & Rigobon, R. (2002). No contagion, only interdependence: Measuring stock market comovements. The Journal of Finance, 57(5), 2223-2261. https://doi.org/10.1111/0022-1082.00494 | |
dc.relation | /*ref*/Fry, R., Martin, V. L., & Tang, C. (2010). A new class of tests of contagion with applications. Journal of Business y Economic Statistics, 28(3), 423-437. https://doi.org/10.1198/jbes.2010.06060 | |
dc.relation | /*ref*/Fry-McKibbin, R., Hsiao, C.-L., & Tang, C. (2014). Contagion and global financial crises: lessons from nine crisis episodes. Open Economies Review, 25(3), 521-570. https://doi.org/10.1007/s11079-013-9289-1 | |
dc.relation | /*ref*/Fry-McKibbin, R., & Hsiao, C. Y-L. (2018). Extremal dependence tests for contagion. Econometric Reviews, 37(6), 626-649. https://doi.org/10.1080/07474938.2015.1122270 | |
dc.relation | /*ref*/Gallegati, M. (2012). A wavelet-based approach to test for financial market contagion. Computational Statistics y Data Analysis, 56(11), 3491-3497. https://doi.org/10.1016/j.csda.2010.11.003 | |
dc.relation | /*ref*/Garcia, J., & Pérez-Libreros, A. F. (2019). El precio spot de la electricidad y la inclusión de energía renovable no convencional: evidencia para Colombia. SSRN. http://dx.doi.org/10.2139/ssrn.3443910 | |
dc.relation | /*ref*/Ghorbel, A., & Boujelbene, Y. (2013). Contagion effect of the oil shock and US financial crisis on the GCC and BRIC countries. International Journal of Energy Sector Management, 7(4), 430-447. https://doi.org/10.1108/IJESM-04-2012-0002 | |
dc.relation | /*ref*/Ghosh, I., Sanyal, M. K., & Jana, R. K. (2020). Co-movement and Dynamic Correlation of Financial and Energy Markets: An Integrated Framework of Nonlinear Dynamics, Wavelet Analysis and DCC-GARCH. Computational Economics, 57, 503–527. https://doi.org/10.1007/s10614-019-09965-0 | |
dc.relation | /*ref*/Grubel, H. G., & Fadner, K. (1971). The interdependence of international equity markets. The Journal of Finance, 26(1), 89-94. https://doi.org/10.1111/j.1540-6261.1971.tb00591.x | |
dc.relation | /*ref*/Guesmi, K., Abid, I., Creti, A., & Chevallier, J. (2018). Oil Price Risk and Financial Contagion. The Energy Journal, 39(2). https://doi.org/10.5547/01956574.39.SI2.kgue | |
dc.relation | /*ref*/Hamdi, B., Aloui, M., Alqahtani, F., & Tiwari, A. (2019). Relationship between the oil price volatility and sectoral stock markets in oil-exporting economies: Evidence from wavelet nonlinear denoised based quantile and Granger-causality analysis. Energy Economics, 80, 536-552. https://doi.org/10.1016/j.eneco.2018.12.021 | |
dc.relation | /*ref*/Hergety, S. W. (2012). Exchange market pressure, commodity prices, and contagion in Latin America. The Journal of International Trade & Economic Development, 23(1), 56-77. https://doi.org/10.1080/09638199.2012.679292 | |
dc.relation | /*ref*/Hong, Y., Tu, J., & Zhou, G. (2007). Asymmetries in Stock Returns: Statistical Tests and Economic Evaluation. The Review of Financial Studies, 20(5), 1547-1581. https://doi.org/10.1093/rfs/hhl037 | |
dc.relation | /*ref*/Kaminsky, G. L., & Reinhart, C. M. (2000). On crises, contagion, and confusion. Journal of International Economics, 51(1), 145-168. https://doi.org/10.1016/S0022-1996(99)00040-9 | |
dc.relation | /*ref*/Kilian, L., & Vigfusson, R.J. (2011). Are the responses of the U.S. economy asymmetric in energy price increases and decreases? Quantitative Economics, 2, 419-453. https://doi.org/10.3982/QE99 | |
dc.relation | /*ref*/Lahmiri, S., Uddin, G. S., & Bekiros, S. (2017). Clustering of short and long-term co-movements in international financial and commodity markets in wavelet domain. Physica A: Statistical Mechanics and its Applications, 486, 947-955. https://doi.org/10.1016/j.physa.2017.06.012 | |
dc.relation | /*ref*/Li, J., Xie, C., & Long, H. (2019). The roles of inter-fuel substitution and inter-market contagion in driving energy prices: Evidences from China’s coal market. Energy Economics, 84, 104525. https://doi.org/10.1016/j.eneco.2019.104525 | |
dc.relation | /*ref*/Lin, L., Kuang, Y., Jiang, Y., & Su, X. (2019). Assessing risk contagion among the Brent crude oil market, London gold market and stock markets: Evidence based on a new wavelet decomposition approach. The North American Journal of Economics and Finance, 50, 101035. https://doi.org/10.1016/j.najef.2019.101035 | |
dc.relation | /*ref*/Lunde, A., & Timmermann, A. (2004). Duration dependence in stock prices: An analysis of bull and bear markets. Journal of Business & Economic Statistics, 22(3), 253-273. https://doi.org/10.1198/073500104000000136 | |
dc.relation | /*ref*/Mahadeo, S. M. R., Heinlein, R., & Legrenzi, G. D. (2019). Energy contagion analysis: A new perspective with application to a small petroleum economy. Energy Economics, 80, 890-903. https://doi.org/10.1016/j.eneco.2019.02.007 | |
dc.relation | /*ref*/Mensi, W., Ur Rehman, M., Al-Yahyaee, K. H., & Vo, X. V. (2023). Frequency dependence between oil futures and international stock markets and the role of gold, bonds, and uncertainty indices: Evidence from partial and multivariate wavelet approaches. Resources Policy, 80, 103161. https://doi.org/10.1016/j.resourpol.2022.103161 | |
dc.relation | /*ref*/Pagan, A. R., & Sossounov, K. A. (2003). A simple framework for analysing bull and bear markets. Journal Applied Econometrics, 18(1), 511-532. https://doi.org/10.1002/jae.664 | |
dc.relation | /*ref*/Pan, Z., Zheng, X., & Gong, Y. (2015). A model-free test for contagion between crude oil and stock markets. Economics Letters, 130, 1-4. https://doi.org/10.1016/j.econlet.2015.02.023 | |
dc.relation | /*ref*/Pericoli, M., & Sbracia, M. (2003). A Primer on Financial Contagion. Journal of Economic Surveys, 17(4), 571-608. https://doi.org/10.1111/1467-6419.00205 | |
dc.relation | /*ref*/Ranta, M. (2013). Contagion among major world markets: a wavelet approach. International Journal of Managerial Finance, 9(2), 133-149. http://dx.doi.org/10.1108/17439131311307556 | |
dc.relation | /*ref*/Reboredo, J. C., & Rivera-Castro, M. A. (2013). A wavelet decomposition approach to crude oil price and exchange rate dependence. Economic Modelling, 32, 42-57. https://doi.org/10.1016/j.econmod.2012.12.028 | |
dc.relation | /*ref*/Reboredo, J. C., & Rivera-Castro, M. A. (2014). Wavelet-based evidence of the impact of oil prices on stock returns. International Review of Economics & Finance, 29, 145-176. https://doi.org/10.1016/j.iref.2013.05.014 | |
dc.relation | /*ref*/Roy, A., Anchal, S., & Soudeep, D. (2023). A wavelet-based methodology to compare the impact of pandemic versus Russia–Ukraine conflict on crude oil sector and its interconnectedness with other energy and non-energy markets. Energy Economics, 124, 106830. https://doi.org/10.1016/j.eneco.2023.106830 | |
dc.relation | /*ref*/Samarakoon, L. P. (2011). Stock market interdependence, contagion, and the U.S. financial crisis: The case of emerging and frontier markets. Journal of International Financial Markets, Institutions and Money, 21(5), 724-742. https://doi.org/10.1016/j.intfin.2011.05.001 | |
dc.relation | /*ref*/Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425-442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x | |
dc.relation | /*ref*/Shrestha, K., Subramaniam, R., Peranginangin, Y., y Philip, S. S. S. (2018). Quantile hedge ratio for energy markets. Energy Economics, 71, 253-272. https://doi.org/10.1016/j.eneco.2018.02.020 | |
dc.relation | /*ref*/Uribe, J. (2011). Contagio financiero: una metodología para su evaluación mediante coeficientes de dependencia asintótica. Lecturas de Economía, (75), 29-57. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-25962011000200003&lng=en&tlng=es | |
dc.relation | /*ref*/Wen, X., Wei, Y., & Huang, D. (2012). Measuring contagion between energy market and stock market during financial crisis: A copula approach. Energy Economics, 34(5), 1435-1446. https://doi.org/10.1016/j.eneco.2012.06.021 | |
dc.relation | /*ref*/XM. (s.f.). Precio de bolsa y escasez. https://www.xm.com.co/transacciones/cargo-por-confiabilidad/precio-de-bolsa-y-escasez | |
dc.relation | /*ref*/Zhao, Z., Wen, H., & Li, K. (2021). Identifying bubbles and the contagion effect between oil and stock markets: New evidence from China. Economic Modelling 94, 780-788. https://doi.org/10.1016/j.econmod.2020.02.018 | |
dc.relation | /*ref*/Zhou, Z., Lin, L., & Li, S. (2018). International stock market contagion: A CEEMDAN wavelet analysis. Economic Modelling, 72, 333-352. https://doi.org/10.1016/j.econmod.2018.02.010 | |
dc.relation | /*ref*/Zhu, H., Wu, H., Ren, Y., & Yu, D. (2022). Time-frequency effect of investor sentiment, economic policy uncertainty, and crude oil on international stock markets: evidence from wavelet quantile analysis. Applied Economics, 54(53), 6116-6146. https://doi.org/10.1080/00036846.2022.2057912 | |
dc.rights | Derechos de autor 2023 Luis Angel Meneses Cerón, Jorge Eduardo Orozco Álvarez, Juan Camilo Mosquera Muñoz, Víctor Manuel Vélez Rivera | es-ES |
dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0 | es-ES |
dc.source | Revista CEA; Vol. 10 No. 22 (2024); e2578 | en-US |
dc.source | Revista CEA; Vol. 10 Núm. 22 (2024); e2578 | es-ES |
dc.source | 2422-3182 | |
dc.source | 2390-0725 | |
dc.subject | contagio financiero energético | es-ES |
dc.subject | comovimientos | es-ES |
dc.subject | análisis de ondas | es-ES |
dc.subject | precio spot de energía | es-ES |
dc.subject | mercado global de energía | es-ES |
dc.subject | energy contagion | en-US |
dc.subject | co-movements | en-US |
dc.subject | wavelet analysis | en-US |
dc.subject | electricity spot price | en-US |
dc.subject | global energy market | en-US |
dc.title | A New Perspective on Energy Contagion in Colombia: Evidence from Wavelet Analysis and Co-Movement Dynamics | en-US |
dc.title | Una nueva perspectiva del contagio financiero energético en Colombia: evidencia del análisis de ondas y dinámicas de comovimientos | es-ES |
dc.type | info:eu-repo/semantics/article | |
dc.type | info:eu-repo/semantics/publishedVersion |