Postcontrast Medical Image Synthesis in Breast DCE- MRI Using Deep Learning
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor
Instituto Tecnológico Metropolitano (ITM)
Fecha
Citación
Título de serie/ reporte/ volumen/ colección
Es Parte de
Descripción
Breast cancer is one of the leading causes of death in women in the world, so its early detection has become a priority to save lives. For the diagnosis of this type of cancer, there are techniques such as dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), which uses a contrast agent to enhance abnormalities in breast tissue, which improves the detection and characterization of possible tumors. As a limitation, DCE-MRI studies are usually expensive, there is little equipment available to perform them, and in some cases the contrast medium can generate adverse effects due to an allergic reaction. Considering all of the above, the aim of this work was to use deep learning models for the generation of postcontrast synthetic images in DCE-MRI studies. The proposed methodology consisted of the development of a cost function, called CeR-Loss, that takes advantage of the contrast agent uptake behavior. As a result, two new deep learning architectures were trained, which we have named G-RiedGAN and D-RiedGAN, for the generation of postcontrast images in DCE-MRI studies, from precontrast images. Finally, it is concluded that the peak signal-to- noise ratio, structured similarity indexing method, and mean absolute error metrics show that the proposed architectures improve the postcontrast image synthesis process, preserving greater similarity between the synthetic images and the real images, compared to the state- of-the-art base models.
El cáncer de mama es una de las principales causas de muerte en mujeres en el mundo, por lo que su detección de forma temprana se ha convertido en una prioridad para salvar vidas. Para el diagnóstico de este tipo de cáncer existen técnicas como la imagen de resonancia magnética dinámica con realce de contraste (DCE-MRI, por sus siglas en inglés), la cual usa un agente de contraste para realzar las anomalías en el tejido de la mama, lo que mejora la detección y caracterización de posibles tumores. Como limitación, los estudios de DCE-MRI suelen tener un costo alto, hay poca disponibilidad de equipos para realizarlos, y en algunos casos los medios de contraste pueden generar efectos adversos por reacciones alérgicas. Considerando lo anterior, este trabajo tuvo como objetivo el uso de modelos de aprendizaje profundo para la generación de imágenes sintéticas postcontraste en estudios de DCE-MRI. La metodología consistió en el desarrollo de una función de costo denominada pérdida en las regiones con realce de contraste que aprovecha el comportamiento de la captación del agente de contraste. Como resultado se entrenaron dos nuevas arquitecturas de aprendizaje profundo, las cuales hemos denominado G- RiedGAN y D-RiedGAN, para la generación de imágenes postcontraste en estudios de DCE-MRI, a partir de imágenes precontraste. Finalmente, se concluye que las métricas proporción máxima señal ruido, índice de similitud estructural y error absoluto medio muestran que las arquitecturas propuestas mejoran el proceso de síntesis de las imágenes postcontraste preservando mayor similitud entre las imágenes sintéticas y las imágenes reales, esto en comparación con los modelos base en el estado del arte.
El cáncer de mama es una de las principales causas de muerte en mujeres en el mundo, por lo que su detección de forma temprana se ha convertido en una prioridad para salvar vidas. Para el diagnóstico de este tipo de cáncer existen técnicas como la imagen de resonancia magnética dinámica con realce de contraste (DCE-MRI, por sus siglas en inglés), la cual usa un agente de contraste para realzar las anomalías en el tejido de la mama, lo que mejora la detección y caracterización de posibles tumores. Como limitación, los estudios de DCE-MRI suelen tener un costo alto, hay poca disponibilidad de equipos para realizarlos, y en algunos casos los medios de contraste pueden generar efectos adversos por reacciones alérgicas. Considerando lo anterior, este trabajo tuvo como objetivo el uso de modelos de aprendizaje profundo para la generación de imágenes sintéticas postcontraste en estudios de DCE-MRI. La metodología consistió en el desarrollo de una función de costo denominada pérdida en las regiones con realce de contraste que aprovecha el comportamiento de la captación del agente de contraste. Como resultado se entrenaron dos nuevas arquitecturas de aprendizaje profundo, las cuales hemos denominado G- RiedGAN y D-RiedGAN, para la generación de imágenes postcontraste en estudios de DCE-MRI, a partir de imágenes precontraste. Finalmente, se concluye que las métricas proporción máxima señal ruido, índice de similitud estructural y error absoluto medio muestran que las arquitecturas propuestas mejoran el proceso de síntesis de las imágenes postcontraste preservando mayor similitud entre las imágenes sintéticas y las imágenes reales, esto en comparación con los modelos base en el estado del arte.

