Introduction of Aggregators to Colombian Electricity Distribution Networks Through a Business Vision

dc.creatorCastro Montilla, Leidy Daniela
dc.creatorCarvajal, Sandra Ximena
dc.date2022-08-12
dc.date.accessioned2025-10-01T23:52:48Z
dc.descriptionThe main objective of this article is to establish the most significant parameters that enhance the insertion of Independent Information Management Agents (GIDI), based on an analysis of different international experiences where these agents are known as Aggregators, to later be able to establish a business strategy around the functions and products that can be offered within a Colombian energy market. For this, it starts from a study of art focused on the different experiences at a global level, in this way with the help of dynamic systems and systemic thinking, the main parameters that govern the optimal functioning of these agents in the market are determined and finally through the Canvas model, establish a business strategy using the results of the systemic analysis. In this sense, it is obtained what characteristics potentiate the entry of the agents and it is established the best scenario and under what opinions the proposed system can be evaluated. Finally, a business option can be established by trading demand response programs and as a feasible scenario to analyze the proposed model.en-US
dc.descriptionEl presente artículo tuvo como objetivo principal establecer los parámetros más significativos que potencializan la inserción de Agentes Independientes de Gestión de la Información (GIDI) a partir de un análisis de diferentes experiencias internacionales en donde estos agentes se conocen como “agregadores”, para luego establecer una estrategia de negocio entorno a las funciones y productos que puedan ofrecer dentro de un mercado energético colombiano. Para ello, se partió de un estudio del arte enfocado en los diferentes casos de éxito a escala global; de esta forma, con ayuda de los sistemas dinámicos y del pensamiento sistémico, se determinaron los principales parámetros que rigen el óptimo funcionamiento de estos agentes en el mercado y, finalmente, por medio del modelo Canvas, se estableció una estrategia de negocio empleando los resultados del análisis sistémico. En este sentido, se obtuvieron las características que potencializan la entrada de los agentes y se estableció dentro de qué escenario y bajo qué dictámenes se puede evaluar el sistema propuesto. Finalmente, se establece una opción de negocio mediante el comercio de programas de respuesta a la demanda como un escenario factible para analizar el modelo propuesto.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2362
dc.identifier10.22430/22565337.2362
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7831
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2362/2507
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2362/2508
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2362/2509
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2362/2521
dc.relation/*ref*/M. Santa María; N.-H. Von Der Fehr; J. Millán; J. Benavides; O. García; E. Schutt, El mercado de la energía eléctrica en Colombia: Características, evolución e impacto sobre otros sectores, 1ra Ed., Colombia, Cuadernos Fedesarrollo 30, 2019. http://hdl.handle.net/11445/171
dc.relation/*ref*/F. P. Sioshansi, Smart Grid - Integrating Renewable, Distributed & Efficient Energy, USA, Menlo Energy Economics. 2012.
dc.relation/*ref*/Comisión de Regulación de Energía y Gas (CREG), Resolución No. 219 de 2020 (29 de diciembre de 2020). Colombia, 2020.
dc.relation/*ref*/Comisión de Regulación de Energía y Gas (CREG), Condiciones para la implementación de la infraestructura de medición avanzada en el SIN, no. 1063. 2020.
dc.relation/*ref*/J. Ikäheimo; C. Evens; S. Kärkkäinen, “DER Aggregator business: the Finnish case”, Reporte VTT-R-06961-09DER. https://www.presentica.com/doc/11259937/der-aggregator-business-the-finnish-case-pdf-document
dc.relation/*ref*/S. Burger; J. P. Chaves-Ávila; I. J. Pérez-Arriaga; C. Batlle, “The Value of Aggregators in Electricity Systems” MIT Cent. Energy Environ. Policy Res., Jan. 2016. https://energy.mit.edu/publication/the-value-of-aggregators-in-electricity-systems/
dc.relation/*ref*/X. Lu; K. Li; H. Xu; F. Wang; Z. Zhou; Y. Zhang, “Fundamentals and business model for resource aggregator of demand response in electricity markets”, Energy, vol. 204, p. 117885, Aug. 2020. https://doi.org/10.1016/j.energy.2020.117885
dc.relation/*ref*/International Renewable Energy Agency, “Aggregators Innovation Landscape Brief”, Abu Dhabi, 2019. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Feb/IRENA_Innovation_Aggregators_2019.PDF
dc.relation/*ref*/M. Hashmi; S. Hänninen; K. Mäki, “Survey of smart grid concepts, architectures, and technological demonstrations worldwide”, in 2011 IEEE PES Conf. Innov. Smart Grid Technol. Lat. Am. SGT LA 2011 - Conf. Proc., Medellín, 2011, pp. 1–7. https://doi.org/10.1109/ISGT-LA.2011.6083192
dc.relation/*ref*/Ö. Okur; P. Heijnen; Z. Lukszo, “Aggregator’s business models in residential and service sectors: A review of operational and financial aspects”, Renew. Sustain. Energy Rev., vol. 139, p. 110702, Apr. 2021. https://doi.org/10.1016/j.rser.2020.110702
dc.relation/*ref*/A. Stratigea; G. Somarakis; M. Panagiotopoulou, “Smartening-Up Communities in Less-Privileged Urban Areas—The DemoCU Participatory Cultural Planning Experience in Korydallos—Greece Municipality” in Smart Cities in the Mediterranean. Coping with Sustainability Objectives in Small and Medium-sized Cities and Island Communities,” Switzerland, Springer Nature, 2017, pp. 85-112. https://link.springer.com/book/10.1007/978-3-319-54558-5
dc.relation/*ref*/R. H. Katz et al., “An information-centric energy infrastructure: The Berkeley view”, Sustain. Comput. Informatics Syst., vol. 1, no. 1, pp. 7–22, Mar. 2011. https://doi.org/10.1016/j.suscom.2010.10.001
dc.relation/*ref*/K. Bruninx; H. Pandžić; H. Le Cadre; E. Delarue, “On the Interaction between Aggregators, Electricity Markets and Residential Demand Response Providers”, IEEE Trans. Power Syst., vol. 35, no. 2, Washington, 2020, pp. 840–853. https://doi.org/10.1109/TPWRS.2019.2943670
dc.relation/*ref*/M. Khoshjahan; M. Soleimani; M. Kezunovic, “Optimal participation of PEV charging stations integrated with smart buildings in the wholesale energy and reserve markets”, in 2020 IEEE Power Energy Soc. Innov. Smart Grid Technol. Conf. ISGT 2020, Washington, 2020, pp. 20–24. https://doi.org/10.1109/ISGT45199.2020.9087686
dc.relation/*ref*/A. Sanchez Miralles; T. Gomez San Roman; I. J. Fernández; C. F. Calvillo, “Business Models Towards the Effective Integration of Electric Vehicles in the Grid”, IEEE Intelligent Transportation Systems Magazine, vol. 6, no. 4, pp. 45–56, Oct. 2014. https://doi.org/10.1109/MITS.2014.2329327
dc.relation/*ref*/T. Gómez San Román; I. Momber; M. R. Abbad; A. Sánchez Miralles, “Regulatory framework and business models for charging plug-in electric vehicles: Infrastructure, agents, and commercial relationships”, Energy Policy, vol. 39, no. 10, pp. 6360–6375, Oct. 2011. https://doi.org/10.1016/j.enpol.2011.07.037
dc.relation/*ref*/J. Mullan; D. Harries; T. Bräunl; S. Whitely, “The technical, economic and commercial viability of the vehicle-to-grid concept”, Energy Policy, vol. 48, pp. 394–406, Sep. 2012. https://doi.org/10.1016/j.enpol.2012.05.042
dc.relation/*ref*/S. L. Andersson et al., “Plug-in hybrid electric vehicles as regulating power providers: Case studies of Sweden and Germany”, Energy Policy, vol. 38, no. 6, pp. 2751–2762, Jun. 2010. https://doi.org/10.1016/j.enpol.2010.01.006
dc.relation/*ref*/M. D. Galus; M. Zima; G. Andersson, “On integration of plug-in hybrid electric vehicles into existing power system structures”, Energy Policy, vol. 38, no. 11, pp. 6736–6745, Nov. 2010. https://doi.org/10.1016/j.enpol.2010.06.043
dc.relation/*ref*/C. Gouveia; D. Rua; F. J. Soares; C. Moreira; P. G. Matos; J. A. P. Lopes, “Development and implementation of Portuguese smart distribution system”, Electr. Power Syst. Res., vol. 120, pp. 150–162, Mar. 2015. https://doi.org/10.1016/j.epsr.2014.06.004
dc.relation/*ref*/Q. Wang; C. Zhang; Y. Ding; G. Xydis; J. Wang; J. Østergaard, “Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response”, Appl. Energy, vol. 138, pp. 695–706, Jan. 2015. https://doi.org/10.1016/j.apenergy.2014.10.048
dc.relation/*ref*/C. F. Calvillo; A. Sánchez-Miralles; J. Villar; F. Martín, “Optimal planning and operation of aggregated distributed energy resources with market participation”, Appl. Energy, vol. 182, pp. 340–357, Nov. 2016. https://doi.org/10.1016/j.apenergy.2016.08.117
dc.relation/*ref*/L. Gkatzikis; I. Koutsopoulos; T. Salonidis, “The role of aggregators in smart grid demand response markets”, IEEE J. Sel. Areas Commun., vol. 31, no. 7, pp. 1247–1257, Jun. 2013. https://doi.org/10.1109/JSAC.2013.130708
dc.relation/*ref*/M. Tavasoli; M. H. Yaghmaee; A. H. Mohajerzadeh, “Optimal placement of data aggregators in smart grid on hybrid wireless and wired communication”, in 2016 4th IEEE Int. Conf. Smart Energy Grid Eng. SEGE 2016, Oshawa, 2016, pp. 332–336. https://doi.org/10.1109/SEGE.2016.7589547
dc.relation/*ref*/E. Peeters; D. Six; M. Hommelberg; R. Belhomme; F. Bouffard, “The ADDRESS project: An architecture and markets to enable active demand”, in 2009 6th Int. Conf. Eur. Energy Mark., Leuven, 2009, pp. 1–5. https://doi.org/10.1109/EEM.2009.5207145
dc.relation/*ref*/S. Karnouskos; D. Ilic; P. G. Da Silva, “Using flexible energy infrastructures for demand response in a Smart Grid city”, in IEEE PES Innov. Smart Grid Technol. Conf. Eur., Berlin, 2012, pp. 1–7. https://doi.org/10.1109/ISGTEurope.2012.6465859
dc.relation/*ref*/H. Pires; A. M. Carreiro; G. Pereira; R. Carreira; J. P. Trovao; J. Landeck, “IP@Smart - Energy management system applied to eco-efficient public lighting networks”, in 2014 IEEE Veh. Power Propuls. Conf. VPPC 2014, Coimbra, 2014, pp. 1-6. https://doi.org/10.1109/VPPC.2014.7007094
dc.relation/*ref*/M. Delfanti; G. Esposito; V. Olivieri; D. Zaninelli, “SCUOLA project: The hub of smart services for cities and communities”, in 2015 Int. Conf. Renew. Energy Res. Appl. ICRERA 2015, vol. 5, Palermo, 2015, pp. 1502–1506. https://doi.org/10.1109/ICRERA.2015.7418658
dc.relation/*ref*/S. Karnouskos, “Demand Side Management via prosumer interactions in a smart city energy marketplace”, in IEEE PES Innov. Smart Grid Technol. Conf. Eur., Manchester, 2011, pp. 1–7. https://doi.org/10.1109/ISGTEurope.2011.6162818
dc.relation/*ref*/G. Castagneto Gissey; D. Subkhankulova; P. E. Dodds; M. Barrett, “Value of energy storage aggregation to the electricity system”, Energy Policy, vol. 128, pp. 685–696, Feb. 2019. https://doi.org/10.1016/j.enpol.2019.01.037
dc.relation/*ref*/S. Burger; J. P. Chaves-Ávila; C. Batlle; I. J. Pérez-Arriaga, “A review of the value of aggregators in electricity systems”, Renew. Sustain. Energy Rev., vol. 77, pp. 395–405, Sep. 2017. https://doi.org/10.1016/j.rser.2017.04.014
dc.relation/*ref*/J. E. Contreras-Ocaña; M. A. Ortega-Vazquez; B. Zhang, “Participation of an energy storage aggregator in electricity markets”, IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1171–1183, 2019. https://doi.org/10.1109/TSG.2017.2736787
dc.relation/*ref*/S. Bhattacharyya; T. van Cuijk; R. Fonteijn, “Integrating Smart Storage and Aggregators for Network Congestion Management & Voltage Support in a Pilot Project in Eindhoven”, in 25th Int. Conf. Electr. Distrib. (CIRED), Madrid, 2019, pp. 3–6. http://dx.doi.org/10.34890/186
dc.relation/*ref*/H. Lotfi; R. Ghazi, “Optimal participation of demand response aggregators in reconfigurable distribution system considering photovoltaic and storage units”, J. Ambient Intell. Humaniz. Comput., vol. 12, no. 2, pp. 2233–2255, Jul. 2020. https://doi.org/10.1007/s12652-020-02322-2
dc.relation/*ref*/I. Lampropoulos; G. M. A. Vanalme; W. L. Kling, “A methodology for modeling the behavior of electricity prosumers within the smart grid”, in IEEE PES Innov. Smart Grid Technol. Conf. Eur. ISGT Eur., 2010, pp. 1-8. https://doi.org/10.1109/ISGTEUROPE.2010.5638967
dc.relation/*ref*/C. Kieny; B. Berseneff; N. Hadjsaid; Y. Besanger; J. Maire, “On the concept and the interest of Virtual Power plant: Some results from the European project Fenix”, 2009 IEEE Power Energy Soc. Gen. Meet. PES ’09, 2009, pp. 1–6. https://doi.org/10.1109/PES.2009.5275526
dc.relation/*ref*/K. El Bakari; W. L. Kling, “Development and operation of virtual power plant system”, in 2011 2nd IEEE PES Innov. Smart Grid Technol. Conf. Eur., 2011, pp. 1–5. https://doi.org/10.1109/ISGTEurope.2011.6162710
dc.relation/*ref*/S. Littlechild, “Retail competition in electricity markets - expectations, outcomes and economics”, Energy Policy, vol. 37, no. 2, pp. 759–763, Feb. 2009. https://doi.org/10.1016/j.enpol.2008.09.089
dc.relation/*ref*/C. Defeuilley, “Retail competition in electricity markets”, Energy Policy, vol. 37, no. 2, pp. 377–386, Feb. 2009. https://doi.org/10.1016/j.enpol.2008.07.025
dc.relation/*ref*/R. Haider; D. D’Achiardi; V. Venkataramanan; A. Srivastava; A. Bose; A. M. Annaswamy, “Reinventing the utility for distributed energy resources: A proposal for retail electricity markets”, Adv. Appl. Energy, vol. 2, p. 100026, May. 2021. https://doi.org/10.1016/j.adapen.2021.100026
dc.relation/*ref*/T. Zhang; H. Pota; C. C. Chu; R. Gadh, “Real-time renewable energy incentive system for electric vehicles using prioritization and cryptocurrency”, Appl. Energy, vol. 226, pp. 582–594, Sep. 2018. https://doi.org/10.1016/j.apenergy.2018.06.025
dc.relation/*ref*/J. Guo; X. Ding; W. Wu, “An Architecture for Distributed Energies Trading in Byzantine-Based Blockchains,” IEEE Trans. Green Commun. Netw., vol. 6, no. 2, pp. 1216–1230, Jun. 2022, https://doi.org/10.1109/TGCN.2022.3142438
dc.relation/*ref*/Y. Wang; Z. Su; Q. Xu; T. Yang; N. Zhang, “A Secure Charging Scheme for Electric Vehicles with Smart Communities in Vehicular Networks”, IEEE Trans. Veh. Technol., vol. 68, no. 9, pp. 8487–8501, 2019. https://doi.org/10.1109/TVT.2019.2923851
dc.relation/*ref*/M. Sabounchi; J. Wei, “Towards Resilient Networked Microgrids: Blockchain-Enabled Peer-to-Peer Electricity Trading Mechanism”, in 2017 IEEE Conf. Energy Internet Energy Syst. Integr., pp. 2017, 1-5. https://doi.org/10.1109/EI2.2017.8245449
dc.relation/*ref*/M. L. Di Silvestre et al., “Blockchain for power systems: Current trends and future applications”, Renew. Sustain. Energy Rev., vol. 119, Mar. 2020. https://doi.org/10.1016/j.rser.2019.109585
dc.relation/*ref*/B. Morales Quintana; N. G. Salcedo, “Estado del arte de las redes inteligentes ‘smart grid’”, universidad Tecnológica de Bolívar, 2012.
dc.relation/*ref*/Unidad de Planeación Minero-Energética (UPME), “Guía práctica para la aplicación de los incentivos tributarios de la Ley 1715 de 2014”, Minist. Minas y Energ., pp. 1-28, 2014.
dc.relation/*ref*/MME, “Decreto Mme 1623 De 2015”, 2015. https://www.lexbase.biz
dc.relation/*ref*/Comisión de Regulación de Energía y Gas (CREG), Se establecen las condiciones para la implementación de la infraestructura de medición avanzada en el SIN -Resolución 131 de 2020 (25 de junio de 2020). Colombia, 2020.
dc.relation/*ref*/S. Espinosa, “Blockchain reference guide adoption and implementation of blockchain technology for the Colombian State”, Minist. Inf. Technol. Commun., 2021.
dc.relation/*ref*/XM S.A. E.S.P., “Propuesta de Requerimientos Técnicos para la Integración de Fuentes de Generación No Síncrona al SIN”, p. 28, 2017. https://www.xm.com.co/Documents/Propuesta_Requerimientos/Propuesta_Requerimientos.pdf
dc.relation/*ref*/L. M. Banguera Gómez, “Estudio, análisis y modelamiento de los sistemas eléctricos de distribución en el contexto de redes eléctricas inteligentes industria 4.0 y automatización dentro de convenio marco de cooperación interinstitucional 080 de 2019 entre la Universidad Distrital Francisco José de Caldas y la RAPE (Región administrativa y de planeación especial)”, Universidad Distrital Francisco José de Caldas, 2020. https://repository.udistrital.edu.co/handle/11349/24730
dc.relation/*ref*/E. Maya et al., “Informe auditoría de cumplimiento XM Compañía de Expertos en Mercados”, 2017. https://webcache.googleusercontent.com/search?q=cache:2P9WRRRG9FUJ:https://www.contraloria.gov.co/documents/20125/201087/INFORME%2BDE%2BAUDITORIA%2BCOMPA%25C3%2591IA%2BDE%2BEXPERTOS%2BEN%2BMERCADO%2BS.A.%2BXM%2B-%2BVIGENCIA%2B2016.pdf/3db10ae4-6ccf-60f3-838a-4ac85b00db67%3Ft%3D1626151430276%26download%3Dtrue+&cd=1&hl=es-419&ct=clnk&gl=co
dc.relation/*ref*/C. Santandreu Mascarell; L. Canós Darós; J. Marín-Roig Ramón, “Business Model Canvas y redacción del Plan de Negocio”, Universitat Politécnica de València, Jun. 2014. https://riunet.upv.es/handle/10251/38381
dc.relation/*ref*/Z. Ma; J. D. Billanes; B. N. Jørgensen, “Aggregation potentials for buildings-Business models of demand response and virtual power plants”, Energies, vol. 10, no. 10, Oct. 2017. https://doi.org/10.3390/en10101646
dc.relation/*ref*/R. Alasseri; A. Tripathi; T. Joji Rao; K. J. Sreekanth, “A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs”, Renew. Sustain. Energy Rev., vol. 77, pp. 617–635, Sep. 2017. https://doi.org/10.1016/j.rser.2017.04.023
dc.relation/*ref*/M. Babar; T. A. Taj; T. P. I. Ahamed; E. A. Al-Ammar, “The conception of the aggregator in demand side management for domestic consumers”, Int. J. Smart Grid Clean Energy, vol. 2, no. 3, pp. 371–375, Oct. 2013. https://doi.org/10.12720/sgce.2.3.371-375
dc.relation/*ref*/C. A. Cardoso; J. Torriti; M. Lorincz, “Making demand side response happen: A review of barriers in commercial and public organisations”, Energy Res. Soc. Sci., vol. 64, pp. 101443, Jun. 2020. https://doi.org/10.1016/j.erss.2020.101443
dc.relation/*ref*/J. Wang; S. Kennedy; J. Kirtley, “A new wholesale bidding mechanism for enhanced demand response in smart grids”, in Innov. Smart Grid Technol. Conf. ISGT 2010, Gaithersburg, 2010, pp. 1-8. https://doi.org/10.1109/ISGT.2010.5434766
dc.relation/*ref*/N. O׳Connell; P. Pinson; H. Madsen; M. O׳Malley, “Benefits and challenges of electrical demand response: A critical review”, Renew. Sustain. Energy Rev., vol. 39, pp. 686–699, Nov. 2014. https://doi.org/10.1016/j.rser.2014.07.098
dc.relation/*ref*/J. D. Sterman, Business dynamics: systems thinking and modeling for a complex world, Irwin/McGraw-Hill Boston, 2000.
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 25 No. 54 (2022); e2362en-US
dc.sourceTecnoLógicas; Vol. 25 Núm. 54 (2022); e2362es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectAdvanced Measurement Infrastructureen-US
dc.subjectDemand Response Programen-US
dc.subjectIndependent Information Manager (GIDI)en-US
dc.subjectmodernization of the distribution networken-US
dc.subjectsmart griden-US
dc.subjectGestor independiente de informaciónes-ES
dc.subjectinfraestructura de media avanzadaes-ES
dc.subjectmodernización de la red de distribuciónes-ES
dc.subjectprograma de respuesta a la demandaes-ES
dc.subjectred inteligentees-ES
dc.titleIntroduction of Aggregators to Colombian Electricity Distribution Networks Through a Business Visionen-US
dc.titleIntroducción de agregadores a las redes de distribución eléctrica colombiana a través de una visión de negocioes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
revistatecnologicas_2362-MUP-VF.pdf
Tamaño:
327.17 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
ojsitm_344271354010.epub
Tamaño:
430.75 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
ojsitm_344271354010.xml
Tamaño:
107.24 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2521.html
Tamaño:
127.15 KB
Formato:
Hypertext Markup Language