Estimating a Building’s Energy Performance using a Composite Indicator: A Case Study

dc.creatorMillán-Martínez, Marlón
dc.creatorOsma-Pinto, Germán
dc.creatorJaramillo-Ibarra , Julián
dc.date2022-08-03
dc.date.accessioned2025-10-01T23:52:47Z
dc.descriptionSeveral studies have analyzed the integration of energy-saving strategies in buildings to mitigate their environmental impact. These studies focused mainly on a disaggregated analysis of such strategies and their effects on the building's energy consumption and thermal behavior, using energy engine simulation software (EnergyPlus, TRNSYS, and DOE2) or graphical interface software (DesignBuilder, eQuest, and ESP-r). However, buildings are complex systems whose energy behavior depends on the interaction of passive (e.g., location and construction materials) and dynamic (e.g., occupation) components. Therefore, this study proposes a composite indicator Building’s Energy Performance (BEP) as an alternative to deal with this complex and multidimensional phenomenon in a simplified way. This indicator considers energy efficiency and thermal comfort. The Electrical Engineering Building (EEB) of the Universidad Industrial de Santander was selected to verify the performance of the BEP indicator. In addition, a sensitivity analysis was performed for different mathematical aggregation methods and weighting values to test their suitability to reproduce the building behavior. Different simulation scenarios modeled with DesignBuilder software were proposed, in which the energy-saving strategies integrated with the building was individually analyzed. The results confirmed that the integration of the building's energy-saving strategies improved the BEP indicator by approximately 16%. It has also been possible to verify that the BEP indicator adequately reproduces the building’s energy behavior while guaranteeing comfort conditions. Finally, the Building Energy Performance indicator is expected to contribute to the integration of sustainability criteria in the design and remodeling stages of buildings.en-US
dc.descriptionDiversos estudios han analizado la integración de estrategias de ahorro energético en edificaciones para mitigar su impacto ambiental. Estos estudios se centraron en un análisis desagregado de estas estrategias y sus efectos sobre el consumo de energía y el comportamiento térmico del edificio utilizando motores de simulación energética (EnergyPlus, TRNSYS y DOE2) o software de interfaz gráfica (DesignBuilder, eQuest y ESP-r). Sin embargo, los edificios son sistemas complejos cuyo comportamiento energético depende de la interacción de componentes pasivos (p. ej., ubicación y materiales de construcción) y dinámicos (p. ej., ocupación). Por lo tanto, este artículo propone un indicador compuesto de desempeño energético de edificaciones (BEP) como una alternativa para enfrentar este fenómeno complejo y multidimensional de manera simplificada. Este indicador considera la eficiencia energética y el confort térmico. Para ello, se seleccionó un edificio real, el Edificio de Ingeniería Eléctrica (EEB) de la Universidad Industrial de Santander, con el fin de verificar el desempeño del indicador BEP. Además, se realizó un análisis de sensibilidad para diferentes métodos matemáticos de agregación y valores de ponderación para probar su idoneidad para reproducir el comportamiento del edificio. Se propusieron diferentes escenarios de simulación modelados mediante el software DesignBuilder, en los que se analizaron individualmente las estrategias de ahorro energético integradas con el edificio. Los resultados confirmaron que las estrategias de ahorro energético del edificio mejoraron el indicador en aproximadamente un 16 %. Asimismo, fue posible verificar que dicho indicador reproduce adecuadamente el comportamiento energético de la edificación mientras se garantiza condiciones de confort. Por último, se espera que el indicador contribuya en la integración de criterios de sostenibilidad en edificaciones durante las etapas de diseño y remodelación.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2352
dc.identifier10.22430/22565337.2352
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7823
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2352/2463
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2352/2473
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2352/2474
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2352/2513
dc.relation/*ref*/UNEP, “Renewables in cities: 2019 global status report”, Paris, 2019.
dc.relation/*ref*/UN DESAPD, “World population prospects 2019: Highlights”, 2019. https://population.un.org/wpp/publications/files/wpp2019_highlights.pdf
dc.relation/*ref*/U.S. Energy Information Agency, “Annual Energy Outlook 2019 with projections to 2050”, EIA, 2019. https://www.idgenergyinv.com/Product_Photo/files/USA Annual Energy Outlook 2019 (with projections to 2050) - EIA- January 2019.pdf
dc.relation/*ref*/World Energy Council, “World Energy Scenarios: Composing energy futures to 2050”, Switzerland, 2013.
dc.relation/*ref*/IEA; UNEP, “Global Status Report 2018: Towards a zero‐emission, efficient and resilient buildings and construction sector”, 2018. https://www.ren21.net/wp-content/uploads/2019/08/Full-Report-2018.pdf
dc.relation/*ref*/S. Durdyev; E. K. Zavadskas; D. Thurnell; A. Banaitis; A. Ihtiyar, “Sustainable construction industry in Cambodia: Awareness, drivers and barriers”, Sustain., vol. 10, no. 2, pp. 1–19, 2018. https://doi.org/10.3390/su10020392
dc.relation/*ref*/S. Dongmei, “Research and Application of Energy Consumption Benchmarking Method for Public Buildings Based on Actual Energy Consumption”, Energy Procedia, vol. 152, pp. 475–483, Oct. 2018. https://doi.org/10.1016/j.egypro.2018.09.256
dc.relation/*ref*/M. A. J. Quirapas-Franco; P. Pawar; X. Wu, “Green building policies in cities: A comparative assessment and analysis”, Energy Build., vol. 231, p. 110561, Jan. 2021. https://doi.org/10.1016/j.enbuild.2020.110561
dc.relation/*ref*/D. Zhang; Y. Tu, “Green building, pro-environmental behavior and well-being: Evidence from Singapore”, Cities, vol. 108, p. 102980, Jan. 2021. https://doi.org/10.1016/j.cities.2020.102980
dc.relation/*ref*/L. He; L. Chen, “The incentive effects of different government subsidy policies on green buildings”, Renew. Sustain. Energy Rev., vol. 135, p. 110123, Jan. 2021. https://doi.org/10.1016/j.rser.2020.110123
dc.relation/*ref*/R. Phillips; L. Troup; D. Fannon; M. J. Eckelman, “Do resilient and sustainable design strategies conflict in commercial buildings? A critical analysis of existing resilient building frameworks and their sustainability implications”, Energy Build., vol. 146, pp. 295–311, Jul. 2017. https://doi.org/10.1016/j.enbuild.2017.04.009
dc.relation/*ref*/J. M. Diaz-Sarachaga; D. Jato-Espino, “Do sustainable community rating systems address resilience?”, Cities, vol. 93, pp. 62–71, Oct. 2019. https://doi.org/10.1016/j.cities.2019.04.018
dc.relation/*ref*/W. Wang, “The concept of sustainable construction project management in international practice”, Environ. Dev. Sustain., vol. 23, pp. 16358–16380, Mar. 2021. https://doi.org/10.1007/s10668-021-01333-z
dc.relation/*ref*/J. O. Atanda; O. A. P. Olukoya, “Green building standards: Opportunities for Nigeria”, J. Clean. Prod., vol. 227, pp. 366–377, Aug. 2019. https://doi.org/10.1016/j.jclepro.2019.04.189
dc.relation/*ref*/Z. Ding et al., “Green building evaluation system implementation”, Build. Environ., vol. 133, pp. 32–40, Apr. 2018. https://doi.org/10.1016/j.buildenv.2018.02.012
dc.relation/*ref*/J. B. Andrade; L. Bragança, “Assessing buildings’ adaptability at early design stages”, IOP Conf. Ser. Earth Environ. Sci. Conf. Ser. Earth Environ. Sci., vol. 225, p. 12012, Feb. 2019. https://doi.org/10.1088/1755-1315/225/1/012012
dc.relation/*ref*/G. Ma; T. Liu; S. Shang, “Improving the climate adaptability of building green retrofitting in different regions: a weight correction system for Chinese national standard”, Sustain. Cities Soc., vol. 69, p. 102843, Jun. 2021. https://doi.org/10.1016/j.scs.2021.102843
dc.relation/*ref*/M. M. Ouf; W. O’Brien; B. Gunay, “On quantifying building performance adaptability to variable occupancy”, Build. Environ., vol. 155, pp. 257–267, May. 2019. https://doi.org/10.1016/j.buildenv.2019.03.048
dc.relation/*ref*/P. Herthogs; W. Debacker; B. Tunçer; Y. De Weerdt; N. De Temmerman, “Quantifying the Generality and Adaptability of Building Layouts Using Weighted Graphs: The SAGA Method”, Buildings, vol. 9, no. 4, Apr. 2019. https://doi.org/10.3390/buildings9040092
dc.relation/*ref*/G. Capeluto, “Adaptability in envelope energy retrofits through addition of intelligence features”, Archit. Sci. Rev., vol. 62, no. 3, pp. 216–229, Feb. 2019. https://doi.org/10.1080/00038628.2019.1574707
dc.relation/*ref*/M. Petrullo; S. A. Jones; B. Morton; A. Lorenz, “World Green Building Trends 2018 SmartMarket Report”, Dodge Data & Anal., 2018. https://www.worldgbc.org/sites/default/files/World%20Green%20Building%20Trends%202018%20SMR%20FINAL%2010-11.pdf
dc.relation/*ref*/G. Osma; L. Amado; R. Villamizar; G. Ordoñez, “Building Automation Systems as Tool to Improve the Resilience from Energy Behavior Approach”, Procedia Eng., vol. 118, pp. 861–868, 2015. https://doi.org/10.1016/j.proeng.2015.08.524
dc.relation/*ref*/S. Yeom; H. Kim; T. Hong; M. Lee, “Determining the optimal window size of office buildings considering the workers’ task performance and the building’s energy consumption”, Build. Environ., vol. 177, p. 106872, Jun. 2020. https://doi.org/10.1016/j.buildenv.2020.106872
dc.relation/*ref*/F. Shadram; J. Mukkavaara, “Exploring the effects of several energy efficiency measures on the embodied/operational energy trade-off: A case study of swedish residential buildings”, Energy Build., vol. 183, pp. 283–296, Jan. 2019. https://doi.org/10.1016/j.enbuild.2018.11.026
dc.relation/*ref*/K. D. Reyes-Barajas; R. A. Romero-Moreno; C. Sotelo-Salas; A. Luna-León; G. Bojórquez-Morales, “Passive strategies for energy-efficient building envelopes for housing developments in hot arid climates”, in WIT Transactions on Ecology and the Environment, vol. 249, pp. 115–125, 2020. https://doi.org/10.2495/SC200101
dc.relation/*ref*/I. El-Darwish; M. Gomaa, “Retrofitting strategy for building envelopes to achieve energy efficiency”, Alexandria Eng. J., vol. 56, no. 4, pp. 579–589, Dec. 2017. https://doi.org/10.1016/j.aej.2017.05.011
dc.relation/*ref*/N. Delgarm; B. Sajadi; F. Kowsary; S. Delgarm, “Multi-objective optimization of the building energy performance: A simulation-based approach by means of particle swarm optimization (PSO)”, Appl. Energy, vol. 170, pp. 293–303, May. 2016. https://doi.org/10.1016/j.apenergy.2016.02.141
dc.relation/*ref*/P. Shiel; S. Tarantino; M. Fischer, “Parametric analysis of design stage building energy performance simulation models”, Energy Build., vol. 172, pp. 78–93, Aug. 2018. https://doi.org/10.1016/j.enbuild.2018.04.045
dc.relation/*ref*/Y. Chen; X. Liang; T. Hong; X. Luo, “Simulation and visualization of energy-related occupant behavior in office buildings”, Build. Simul., vol. 10, no. 6, pp. 785–798, Mar. 2017. https://doi.org/10.1007/s12273-017-0355-2
dc.relation/*ref*/E. Cuerda; O. Guerra-Santin; J. J. Sendra; F. J. Neila, “Understanding the performance gap in energy retrofitting: Measured input data for adjusting building simulation models”, Energy Build., vol. 209, p. 109688, Feb. 2020. https://doi.org/10.1016/j.enbuild.2019.109688
dc.relation/*ref*/J. H. Choi, “Investigation of the correlation of building energy use intensity estimated by six building performance simulation tools”, Energy Build., vol. 147, pp. 14–26, Jul. 2017. https://doi.org/10.1016/j.enbuild.2017.04.078
dc.relation/*ref*/C. F. Reinhart; C. Cerezo Davila, “Urban building energy modeling - A review of a nascent field”, Build. Environ., vol. 97, pp. 196–202, Feb. 2016. https://doi.org/10.1016/j.buildenv.2015.12.001
dc.relation/*ref*/H. M. Cho; J. H. Park; S. Wi; S. J. Chang; G. Y. Yun; S. Kim, “Energy retrofit analysis of cross-laminated timber residential buildings in Seoul, Korea: Insights from a case study of packages”, Energy Build., vol. 202, p. 109329, Nov. 2019. https://doi.org/10.1016/j.enbuild.2019.07.046
dc.relation/*ref*/C. Filippín; S. Flores Larsen; F. Ricard, “Improvement of energy performance metrics for the retrofit of the built environment. Adaptation to climate change and mitigation of energy poverty”, Energy Build., vol. 165, pp. 399–415, Apr. 2018. https://doi.org/10.1016/j.enbuild.2017.12.050
dc.relation/*ref*/M. G. Gomes; A. M. Rodrigues; F. Natividade, “Thermal and energy performance of medical offices of a heritage hospital building”, J. Build. Eng., vol. 40, p. 102349, Aug. 2021. https://doi.org/10.1016/j.jobe.2021.102349
dc.relation/*ref*/J. Teng; P. Wang; X. Mu; W. Wang, “Energy-saving performance analysis of green technology implications for decision-makers of multi-story buildings”, Environ. Dev. Sustain., vol. 23, pp. 15639–15665, Mar. 2021. https://doi.org/10.1007/s10668-021-01304-4
dc.relation/*ref*/X. Yang; L. Zhao; M. Bruse; Q. Meng, “An integrated simulation method for building energy performance assessment in urban environments”, Energy Build., vol. 54, pp. 243–251, Nov. 2012. https://doi.org/10.1016/j.enbuild.2012.07.042
dc.relation/*ref*/L. Zhu; B. Wang; Y. Sun, “Multi-objective optimization for energy consumption, daylighting and thermal comfort performance of rural tourism buildings in north China”, Build. Environ., vol. 176, p. 106841, Jun. 2020. https://doi.org/10.1016/j.buildenv.2020.106841
dc.relation/*ref*/Y. Schwartz; R. Raslan, “Variations in results of building energy simulation tools, and their impact on BREEAM and LEED ratings: A case study”, Energy Build., vol. 62, pp. 350–359, Jul. 2013. https://doi.org/10.1016/j.enbuild.2013.03.022
dc.relation/*ref*/A. Moazami; S. Carlucci; V. M. Nik; S. Geving, “Towards climate robust buildings: An innovative method for designing buildings with robust energy performance under climate change”, Energy Build., vol. 202, p. 109378, Nov. 2019. https://doi.org/10.1016/j.enbuild.2019.109378
dc.relation/*ref*/S. G. Mahiwal; M. K. Bhoi; N. Bhatt, “Evaluation of energy use intensity (EUI) and energy cost of commercial building in India using BIM technology”, Asian J. Civ. Eng., vol. 22, pp. 877–894, Mar. 2021. https://doi.org/10.1007/s42107-021-00352-5
dc.relation/*ref*/G. Akkose; C. Meral Akgul; I. G. Dino, “Educational building retrofit under climate change and urban heat island effect”, J. Build. Eng., vol. 40, p. 102294, Aug. 2021. https://doi.org/10.1016/j.jobe.2021.102294
dc.relation/*ref*/E. Hewitt; A. Oberg; C. Coronado; C. Andrews, “Assessing ‘green’ and ‘resilient’ building features using a purposeful systems approach”, Sustain. Cities Soc., vol. 48, p. 101546, Jul. 2019. https://doi.org/10.1016/j.scs.2019.101546
dc.relation/*ref*/A. Costa; M. M. Keane; J. I. Torrens; E. Corry, “Building operation and energy performance: Monitoring, analysis and optimisation toolkit”, Appl. Energy, vol. 101, pp. 310–316, Jan. 2013. https://doi.org/10.1016/j.apenergy.2011.10.037
dc.relation/*ref*/C. Fan; F. Xiao; Z. Li; J. Wang, “Unsupervised data analytics in mining big building operational data for energy efficiency enhancement: A review”, Energy Build., vol. 159, pp. 296–308, Jan. 2018. https://doi.org/10.1016/j.enbuild.2017.11.008
dc.relation/*ref*/M. Mazziotta; A. Pareto, “Synthesis of Indicators: The Composite Indicators Approach”, Social Indicators Research Series, In F. Maggino, Ed. Cham: Springer International Publishing, vol. 70, pp. 159–191, Jul. 2017. https://doi.org/10.1007/978-3-319-60595-1_7
dc.relation/*ref*/OECD, Handbook on constructing composite indicators: methodology and user guide. OECD publishing, 2008.
dc.relation/*ref*/F. Giambona; E. Vassallo, “Composite indicator of social inclusion for European countries”, Soc. Indic. Res., vol. 116, no. 1, pp. 269–293, Mar. 2014. https://doi.org/10.1007/s11205-013-0274-2
dc.relation/*ref*/P. Hoffmann; M. Kremer; S. Zaharia, “Financial integration in Europe through the lens of composite indicators”, Econ. Lett., vol. 194, p. 109344, Sep. 2020. https://doi.org/10.1016/j.econlet.2020.109344
dc.relation/*ref*/B. Talukder; K. W. Hipel; G. W. vanLoon, “Developing Composite Indicators for Agricultural Sustainability Assessment: Effect of Normalization and Aggregation Techniques”, Resources, vol. 6, no. 4, p. 66, Nov. 2017. https://doi.org/10.3390/resources6040066
dc.relation/*ref*/C. Dominguez-Gil; M. M. Segovia-Gonzalez; I. Contreras, “A multiplicative composite indicator to evaluate educational systems in OECD countries”, Comp. A J. Comp. Int. Educ., pp. 1–18, 2021. https://doi.org/10.1080/03057925.2020.1865791
dc.relation/*ref*/S. El Gibari; T. Gómez; F. Ruiz, “Evaluating university performance using reference point based composite indicators”, J. Informetr., vol. 12, no. 4, pp. 1235–1250, Nov. 2018. https://doi.org/10.1016/j.joi.2018.10.003
dc.relation/*ref*/M. Feofilovs; F. Romagnoli, “Measuring Community Disaster Resilience in the Latvian Context: An Apply Case Using a Composite Indicator Approach”, Energy Procedia, vol. 113, pp. 43–50, May 2017. https://doi.org/10.1016/j.egypro.2017.04.012
dc.relation/*ref*/M. P. Dočekalová; A. Kocmanová, “Composite indicator for measuring corporate sustainability”, Ecol. Indic., vol. 61, part. 2, pp. 612–623, Feb. 2016. https://doi.org/10.1016/j.ecolind.2015.10.012
dc.relation/*ref*/M. J. Burgass; B. S. Halpern; E. Nicholson; E. J. Milner-Gulland, “Navigating uncertainty in environmental composite indicators”, Ecol. Indic., vol. 75, pp. 268–278, Apr. 2017. https://doi.org/10.1016/j.ecolind.2016.12.034
dc.relation/*ref*/M. Reuter; M. K. Patel; W. Eichhammer; B. Lapillonne; K. Pollier, “A comprehensive indicator set for measuring multiple benefits of energy efficiency”, Energy Policy, vol. 139, p. 111284, Apr. 2020. https://doi.org/10.1016/j.enpol.2020.111284
dc.relation/*ref*/J. Martchamadol; S. Kumar, “An aggregated energy security performance indicator”, Appl. Energy, vol. 103, pp. 653–670. Mar. 2013. https://doi.org/10.1016/j.apenergy.2012.10.027
dc.relation/*ref*/M. Radovanović; S. Filipović; D. Pavlović, “Energy security measurement – A sustainable approach”, Renew. Sustain. Energy Rev., vol. 68, part. 2, pp. 1020–1032, Feb. 2017. https://doi.org/10.1016/j.rser.2016.02.010
dc.relation/*ref*/J. A. Kelly; J. P. Clinch; L. Kelleher; S. Shahab, “Enabling a just transition: A composite indicator for assessing home-heating energy-poverty risk and the impact of environmental policy measures”, Energy Policy, vol. 146, p. 111791, Nov. 2020. https://doi.org/10.1016/j.enpol.2020.111791
dc.relation/*ref*/J. Augutis; R. Krikštolaitis; L. Martišauskas; S. Urbonienė; R. Urbonas; A. B. Ušpurienė, “Analysis of energy security level in the Baltic States based on indicator approach”, Energy, vol. 199, p. 117427, May 2020. https://doi.org/10.1016/j.energy.2020.117427
dc.relation/*ref*/M. M. Rahman; M. G. Rasul; M. M. K. Khan, “Energy conservation measures in an institutional building in sub-tropical climate in Australia”, Appl. Energy, vol. 87, no. 10, pp. 2994–3004, Oct. 2010. https://doi.org/10.1016/j.apenergy.2010.04.005
dc.relation/*ref*/I. Iddrisu; S. C. Bhattacharyya, “Sustainable Energy Development Index: A multi-dimensional indicator for measuring sustainable energy development”, Renew. Sustain. Energy Rev., vol. 50, pp. 513–530, Oct. 2015. https://doi.org/10.1016/j.rser.2015.05.032
dc.relation/*ref*/P. Mathew; L. Sanchez; S. H. Lee; T. Walter, “Assessing the Energy Resilience of Office Buildings: Development and Testing of a Simplified Metric for Real Estate Stakeholders”, Buildings, vol. 11, no. 3, Mar. 2021. https://doi.org/10.3390/buildings11030096
dc.relation/*ref*/A. Gatto; C. Drago, “Measuring and modeling energy resilience”, Ecol. Econ., vol. 172, p. 106527, Jun. 2020. https://doi.org/10.1016/j.ecolecon.2019.106527
dc.relation/*ref*/I. Siksnelyte-Butkiene; D. Streimikiene; V. Lekavicius; T. Balezentis, “Energy poverty indicators: A systematic literature review and comprehensive analysis of integrity”, Sustain. Cities Soc., vol. 67, p. 102756, Apr. 2021. https://doi.org/10.1016/j.scs.2021.102756
dc.relation/*ref*/K. Dolge; A. Kubule; D. Blumberga, “Composite index for energy efficiency evaluation of industrial sector: sub-sectoral comparison”, Environ. Sustain. Indic., vol. 8, p. 100062, Dec. 2020. https://doi.org/10.1016/j.indic.2020.100062
dc.relation/*ref*/Y. Li; J. O’Donnell; R. García-Castro; S. Vega-Sánchez, “Identifying stakeholders and key performance indicators for district and building energy performance analysis”, Energy Build., vol. 155, pp. 1–15, Nov. 2017. https://doi.org/10.1016/j.enbuild.2017.09.003
dc.relation/*ref*/J. Al Dakheel; C. Del Pero; N. Aste; F. Leonforte, “Smart buildings features and key performance indicators: A review”, Sustain. Cities Soc., vol. 61, p. 102328, Oct. 2020. https://doi.org/10.1016/j.scs.2020.102328
dc.relation/*ref*/R. Karagiannis; G. Karagiannis, “Constructing composite indicators with Shannon entropy: The case of Human Development Index”, Socioecon. Plann. Sci., vol. 70, p. 100701, Jun. 2020. https://doi.org/10.1016/j.seps.2019.03.007
dc.relation/*ref*/P. W. M. Souza-Filho et al., “The sustainability index of the physical mining Environment in protected areas, Eastern Amazon”, Environ. Sustain. Indic., vol. 8, p. 100074, Dec. 2020. https://doi.org/10.1016/j.indic.2020.100074
dc.relation/*ref*/O. Kaldas; L. A. Shihata; J. Kiefer, “An index-based sustainability assessment framework for manufacturing organizations”, Procedia CIRP, vol. 97, pp. 235–240, 2021. https://doi.org/10.1016/j.procir.2020.05.231
dc.relation/*ref*/J. M. Cabello; F. Ruiz; B. Pérez-Gladish, “An Alternative Aggregation Process for Composite Indexes: An Application to the Heritage Foundation Economic Freedom Index”, Soc. Indic. Res., vol. 153, no. 2, pp. 443–467, Jan. 2021. https://doi.org/10.1007/s11205-020-02511-8
dc.relation/*ref*/F. G. Santeramo, “On the Composite Indicators for Food Security: Decisions Matter!”, Food Rev. Int., vol. 31, no. 1, pp. 63–73, 2015. https://doi.org/10.1080/87559129.2014.961076
dc.relation/*ref*/S. El Gibari; T. Gómez; F. Ruiz, “Building composite indicators using multicriteria methods: a review”, J. Bus. Econ., vol. 89, no. 1, pp. 1–24, Feb. 2019. https://doi.org/10.1007/s11573-018-0902-z
dc.relation/*ref*/S. G. Medlol; A. A. A. Alwash, “Economic, Social, and Environmental Sustainable Operation of Roadways within the Central Business District (CBD) sector at Hilla City Incorporated with Public Transport”, IOP Conf. Ser. Mater. Sci. Eng., vol. 928, p. 22100, Nov. 2020. https://doi.org/10.1088/1757-899x/928/2/022100
dc.relation/*ref*/M. Floridi; S. Pagni; S. Falorni; T. Luzzati, “An exercise in composite indicators construction: Assessing the sustainability of Italian regions”, Ecol. Econ., vol. 70, no. 8, pp. 1440–1447, Jun. 2011. https://doi.org/10.1016/j.ecolecon.2011.03.003
dc.relation/*ref*/L. Molyneaux; C. Brown; L. Wagner; J. Foster, “Measuring resilience in energy systems: Insights from a range of disciplines”, Renew. Sustain. Energy Rev., vol. 59, pp. 1068–1079, Jun. 2016. https://doi.org/10.1016/j.rser.2016.01.063
dc.relation/*ref*/D. Gatt; C. Yousif; M. Cellura; L. Camilleri; F. Guarino, “Assessment of building energy modelling studies to meet the requirements of the new Energy Performance of Buildings Directive”, Renew. Sustain. Energy Rev., vol. 127, p. 109886. Jul. 2020. https://doi.org/10.1016/j.rser.2020.109886
dc.relation/*ref*/A. Hamburg; K. Kuusk; A. Mikola; T. Kalamees, “Realisation of energy performance targets of an old apartment building renovated to nZEB”, Energy, vol. 194, p. 116874, Mar. 2020. https://doi.org/10.1016/j.energy.2019.116874
dc.relation/*ref*/M. M. Islam; M. Hasanuzzaman, “Chapter 1 - Introduction to energy and sustainable development”, in Energy for Sustainable Development, M. D. Hasanuzzaman and N. A. Rahim, Eds. Academic Press, 2020, pp. 1–18. https://doi.org/10.1016/B978-0-12-814645-3.00001-8
dc.relation/*ref*/J. F. Nicol; S. Roaf, “Rethinking thermal comfort”, Build. Res. & Inf., vol. 45, no. 7, pp. 711–716, Mar. 2017. https://doi.org/10.1080/09613218.2017.1301698
dc.relation/*ref*/G. Osma-Pinto; G. Ordóñez-Plata, “Measuring the effect of forced irrigation on the front surface of PV panels for warm tropical conditions”, Energy Reports, vol. 5, pp. 501–514, Nov. 2019. https://doi.org/10.1016/j.egyr.2019.04.010
dc.relation/*ref*/G. Osma-Pinto; G. Ordóñez-Plata, “Measuring factors influencing performance of rooftop PV panels in warm tropical climates”, Sol. Energy, vol. 185, pp. 112–123, Jun. 2019. https://doi.org/10.1016/j.solener.2019.04.053
dc.relation/*ref*/G. Roshan; M. Arab; V. Klimenko, “Modeling the impact of climate change on energy consumption and carbon dioxide emissions of buildings in Iran”, J. Environ. Heal. Sci. Eng., vol. 17, no. 2, pp. 889–906, Dec. 2019. https://doi.org/10.1007/s40201-019-00406-6
dc.relation/*ref*/DesignBuilder, “Welcome to DesignBuilder V6.”, https://designbuilder.co.uk/helpv6.0/#Advanced_Calculation_Options.htm
dc.relation/*ref*/J. Bouyer; C. Inard; M. Musy, “Microclimatic coupling as a solution to improve building energy simulation in an urban context”, Energy Build., vol. 43, no. 7, pp. 1549–1559, Jul. 2011. https://doi.org/10.1016/j.enbuild.2011.02.010
dc.relation/*ref*/J. Cárdenas-Rangel; G. Osman-Pinto; G. Ordoñez-Plata, “Herramienta metodológica para la evaluación energética mediante simulación de edificaciones en el trópico”, Rev. UIS Ing., vol. 18, no. 2, pp. 259–268, Mar. 2019. https://doi.org/10.18273/revuin.v18n2-2019024
dc.relation/*ref*/L. Diao; Y. Sun; Z. Chen; J. Chen, “Modeling energy consumption in residential buildings: A bottom-up analysis based on occupant behavior pattern clustering and stochastic simulation”, Energy Build., vol. 147, pp. 47–66, Jul. 2017. https://doi.org/10.1016/j.enbuild.2017.04.072
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 25 No. 54 (2022); e2352en-US
dc.sourceTecnoLógicas; Vol. 25 Núm. 54 (2022); e2352es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectBuilding’s energy performance indicatoren-US
dc.subjectgreen buildingsen-US
dc.subjectgreen designen-US
dc.subjectenergy simulationen-US
dc.subjectenergy efficiencyen-US
dc.subjectthermal comforten-US
dc.subjectDesignBuilderen-US
dc.subjectIndicador desempeño energético de edificacioneses-ES
dc.subjectbioconstrucciónes-ES
dc.subjectdiseño verdees-ES
dc.subjectsimulación energéticaes-ES
dc.subjecteficiencia energéticaes-ES
dc.subjectconfort térmicoes-ES
dc.subjectDesignBuilderes-ES
dc.titleEstimating a Building’s Energy Performance using a Composite Indicator: A Case Studyen-US
dc.titleEstimación del desempeño energético de una edificación utilizando un indicador compuesto: un caso de estudioes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
revistatecnologicas_2352-MUP-VF.pdf
Tamaño:
811.17 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
ojsitm_344271354007.epub
Tamaño:
1003.02 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
ojsitm_344271354007.xml
Tamaño:
197.2 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2513.html
Tamaño:
213.05 KB
Formato:
Hypertext Markup Language