Effect of Additives Used in 3D Printing of Portland Cement, Geopolymers and Clay Mixtures: A Review

dc.creatorMuñoz-Benavides, Miguel A.
dc.creatorRobayo-Salazar, Rafael
dc.creatorMejía-de-Gutiérrez, Ruby
dc.date2025-08-30
dc.date.accessioned2025-10-01T23:53:16Z
dc.descriptionControlling the properties of 3D printing mixtures used in construction processes is a major challenge for engineering and materials science, as it requires the use of additives to facilitate their extrusion and layer-by-layer printing. The objective of this review was to analyze the mix designs reported in the scientific literature related to the use of additives. The methodology employed consisted of a review of the Scopus database on additives used in Portland cement-based mixtures, geopolymers, and clays. The types of additives analyzed include: 1) superplasticizers and water reducing additives, which influence fluidity, elastic limit and mechanical resistance, favoring pumpability and extrusion capacity; 2) additives that modify viscosity and rheological properties, which affect static and dynamic flow efficiency, thixotropy, and contribute to increased buildability and printing quality; and 3) setting and hardening regulators, which modify the cement hydration process and have a direct influence on the open time of the mixes. Analysis of the results allowed us to identify critical rheological properties that must be optimized during the design of 3D printing mixes, such as viscosity, thixotropy, and extrusion time. It is concluded that it is important to consider these factors when selecting the additives required in 3D printing mixtures, especially in the case of alternative materials such as geopolymers and clays. The information reported in this review is essential for designers, researchers, and producers interested in exploring the additive manufacturing of these construction materials.en-US
dc.descriptionEl control de las propiedades de las mezclas de impresión 3D aptas para emplear en procesos constructivos es un gran reto para la ingeniería y la ciencia de los materiales, ya que se requiere el uso de aditivos para facilitar su extrusión e impresión capa a capa. El objetivo fue analizar los diseños de mezclas reportados en la literatura científica relacionados con el uso de aditivos. La metodología empleada consistió en la revisión en la base de datos Scopus sobre aditivos utilizados en mezclas basadas en cemento Portland, geopolímeros y arcillas. Los tipos de aditivos incluyen: 1) aditivos superplastificantes y reductores de agua que influyen sobre la fluidez, límite elástico y resistencia mecánica, favoreciendo la bombeabilidad y capacidad de extrusión; 2) aditivos modificadores de la viscosidad y propiedades reológicas, que afectan el esfuerzo de fluencia estático y dinámico, la tixotropía, y contribuyen al aumento de la edificabilidad y calidad de la impresión; y 3) aditivos reguladores de fraguado y endurecimiento, que modifican el proceso de hidratación del cemento, teniendo una influencia directa sobre el tiempo abierto (open time) de las mezclas. El análisis de los resultados permitió identificar las propiedades reológicas críticas que deben ser optimizadas durante el diseño de la mezcla, como la viscosidad, la tixotropía y el tiempo de extrusión. Además, se destaca que, aunque los estudios sobre estos aditivos y sus efectos son abundantes, persisten limitaciones en la evaluación detallada de sus interacciones y su impacto a largo plazo en la durabilidad de las estructuras impresas. Se concluye la importancia de considerar estos factores al seleccionar los aditivos necesarios para mezclas de impresión 3D, especialmente cuando se usan materiales alternativos como geopolímeros y arcillas. La información reportada en esta revisión es fundamental para diseñadores, investigadores y productores interesados en utilizar la manufactura aditiva de materiales de construcción.es-ES
dc.formatapplication/pdf
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3337
dc.identifier10.22430/22565337.3337
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7938
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/3337/3722
dc.relation/*ref*/R. Robayo-Salazar, R. Mejía de Gutiérrez, M. A. Villaquirán-Caicedo, and S. Delvasto Arjona, “3D printing with cementitious materials: Challenges and opportunities for the construction sector,” Autom. Constr., vol. 146, p. 104693, Feb. 2023. https://doi.org/10.1016/j.autcon.2022.104693
dc.relation/*ref*/M. Nodehi, F. Aguayo, S. Edin Nodehi, A. Gholampour, T. Ozbakkaloglu, and O. Gencel, “Durability properties of 3D printed concrete (3DPC),” Autom. Constr., vol. 142, p. 104479, Oct. 2022. https://doi.org/10.1016/j.autcon.2022.104479
dc.relation/*ref*/M. Hojati et al., “3D-printable quaternary cementitious materials towards sustainable development: Mixture design and mechanical properties,” Results Eng., vol. 13, p. 100341, Mar. 2022. https://doi.org/10.1016/j.rineng.2022.10034
dc.relation/*ref*/Z. Li et al., “Fresh and hardened properties of extrusion-based 3D-printed cementitious materials: A review,” Sustainability, vol. 12, no. 14, p. 5628, Jul. 2020. https://doi.org/10.3390/su12145628
dc.relation/*ref*/G. Ma, L. Wang, and Y. Ju, “State-of-the-art of 3D printing technology of cementitious material—An emerging technique for construction,” Sci. China Technol. Sci., vol. 61, pp. 475–495, Apr. 2018. https://doi.org/10.1007/s11431-016-9077-7
dc.relation/*ref*/G. De Schutter, K. Lesage, V. Mechtcherine, V. Naidu Nerella, G. Habert, and I. Agusti-Juan, “Vision of 3D printing with concrete—Technical, economic and environmental potentials,” Cem. Concr. Res., vol. 112, pp. 25–36, Oct. 2018. https://doi.org/10.1016/j.cemconres.2018.06.001
dc.relation/*ref*/T. Ivanova, A. Harizanova, T. Koutzarova, and B. Vertruyen, “Sol-gel derived ZnO:Y nanostructured films: Structural and optical study,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 532, pp. 363–368, Nov. 2017. https://doi.org/10.1016/j.colsurfa.2017.04.065
dc.relation/*ref*/J. Prinsloo, S. Sinha, and B. Von Solms, “A review of industry 4.0 manufacturing process security risks,” Appl. Sci., vol. 9, no. 23, p. 5105, Nov. 2019. https://doi.org/10.3390/app9235105
dc.relation/*ref*/M. Nodehi, T. Ozbakkaloglu, and A. Gholampour, “Effect of supplementary cementitious materials on properties of 3D printed conventional and alkali-activated concrete: A review,” Autom. Constr., vol. 138, p. 104215, Jun. 2022. https://doi.org/10.1016/j.autcon.2022.104215
dc.relation/*ref*/M. A. Muñoz, D. A. Rincón, R. Robayo-Salazar, and R. Mejía de Gutiérrez, “Desarrollo de mezclas para impresión 3D basadas en cemento portland y adiciones de metacaolín, micro sílice y carbonato,” Ing. Compet., vol. 25, no. 4, p. e–20113116, Sep. 2023. https://doi.org/10.25100/iyc.v25i4.13116
dc.relation/*ref*/K. Manikandan, K. Wi, X. Zhang, K. Wang, and H. Qin, “Characterizing cement mixtures for concrete 3D printing,” Manuf. Lett., vol. 24, pp. 33–37, Apr. 2020. https://doi.org/10.1016/j.mfglet.2020.03.002
dc.relation/*ref*/A. Kazemian, X. Yuan, R. Meier, and B. Khoshnevis, “Performance-based testing of Portland cement concrete for construction-scale 3D printing,” in 3D concrete printing technology, J. G. Sanjayan, A. Nazari, and B. Nematollahi, Eds., Amsterdam, Netherlands: Elsevier, 2019, pp. 13–35. https://doi.org/10.1016/B978-0-12-815481-6.00002-6
dc.relation/*ref*/B. Panda, C. Unluer, and M. Jen Tan, “Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing,” Cem. Concr. Compos., vol. 94, pp. 307–314, Nov. 2018. https://doi.org/10.1016/j.cemconcomp.2018.10.002
dc.relation/*ref*/O. Şahin, H. İlcan, A. Tolga Ateşli, A. Kul, G. Yıldırım, and M. Şahmaran, “Construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing,” Cem. Concr. Compos., vol. 121, p. 104088, Aug. 2021. https://doi.org/10.1016/j.cemconcomp.2021.104088
dc.relation/*ref*/S. Rückrich, G. Agranati, and Y. Jacob Grobman, “Earth-based additive manufacturing: A field-oriented methodology for evaluating material printability,” Archit. Sci. Rev., vol. 66, no. 2, pp. 133–143, Dec. 2023. https://doi.org/10.1080/00038628.2022.2154739
dc.relation/*ref*/G. Silva, L. Quispe, S. Kim, J. Nakamatsu, and R. Aguilar, “Development of a stabilized natural fiber-reinforced earth composite for construction applications using 3D printing,” IOP Conf. Series: Mater. Sci. Engin., vol. 706, no. 1, p. 12015, Nov. 2019. https://doi.org/10.1088/1757-899X/706/1/012015
dc.relation/*ref*/N. Roussel, “Rheological requirements for printable concretes,” Cem. Concr. Res., vol. 112, pp. 76–85, Oct. 2018. https://doi.org/10.1016/j.cemconres.2018.04.005
dc.relation/*ref*/M. Tramontin Souza et al., “Role of chemical admixtures on 3D printed Portland cement: Assessing rheology and buildability,” Constr. Build. Mater., vol. 314, no. Part A, p. 125666, Jan. 2022. https://doi.org/10.1016/j.conbuildmat.2021.125666
dc.relation/*ref*/T. T. Le et al., “Hardened properties of high-performance printing concrete,” Cem. Concr. Res., vol. 42, no. 3, pp. 558–566, Mar. 2012. https://doi.org/10.1016/j.cemconres.2011.12.003
dc.relation/*ref*/A. Kazemian, X. Yuan, E. Cochran, and B. Khoshnevis, “Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture,” Constr. Build. Mater., vol. 145, pp. 639–647, Aug. 2017. https://doi.org/10.1016/j.conbuildmat.2017.04.015
dc.relation/*ref*/M. Tramontin Souza et al., “Role of temperature in 3D printed geopolymers: Evaluating rheology and buildability,” Mater. Lett., vol. 293, p. 129680, Jun. 2021. https://doi.org/10.1016/j.matlet.2021.129680
dc.relation/*ref*/S. Kristombu Baduge et al., “Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods,” Structures, vol. 29. pp. 1597–1609, Feb. 2021. https://doi.org/10.1016/j.istruc.2020.12.061
dc.relation/*ref*/M. S. Khan, F. Sanchez, and H. Zhou, “3-D printing of concrete: Beyond horizons,” Cem. Concr. Res., vol. 133, p. 106070, Jul. 2020. https://doi.org/10.1016/j.cemconres.2020.106070
dc.relation/*ref*/Additive Manufacturing - General Principles - Terminology, ASTM/ISO 52900, Advancing Standars Transforming Markets, and International Organization for Standardization, West Conshohocken, USA, 2021. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:dis:ed-2:v1:en
dc.relation/*ref*/D. Grossin et al., “A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering / melting): Calcium phosphate, silicon carbide, zirconia, alumina, and their composites,” Open Ceram., vol. 5, p. 100073, Mar. 2021. https://doi.org/10.1016/j.oceram.2021.100073
dc.relation/*ref*/M. A. Khan, “Mix suitable for concrete 3D printing: A review,” Mater. Today Proc., vol. 32, no. Part 4, pp. 831–837, 2020. https://doi.org/10.1016/j.matpr.2020.03.825
dc.relation/*ref*/A. Perrot, D. Rangeard, and E. Courteille, “3D printing of earth-based materials: Processing aspects,” Constr. Build. Mater., vol. 172, pp. 670–676, May. 2018. https://doi.org/10.1016/j.conbuildmat.2018.04.017
dc.relation/*ref*/M. Tramontin Souza, I. M. Ferreira, E. Guzi de Moraes, L. Senff, and A. P. Novaes de Oliveira, “3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects,” J. Build. Eng., vol. 32, p. 101833, Nov. 2020. https://doi.org/10.1016/j.jobe.2020.101833
dc.relation/*ref*/M. V. Tran, Y. T. H. Cu, and C. V. H. Le, “Rheology and shrinkage of concrete using polypropylene fiber for 3D concrete printing,” J. Build. Eng., vol. 44, p. 103400, Dec. 2021. https://doi.org/10.1016/j.jobe.2021.103400
dc.relation/*ref*/P. Sikora et al., “The effects of nano-and micro-sized additives on 3D printable cementitious and alkali-activated composites: A review,” Appl. Nanosci., vol. 12, no. 4, pp. 805–823, Apr. 2022. https://doi.org/10.1007/s13204-021-01738-2
dc.relation/*ref*/A. Vespalec, J. Podroužek, J. Boštík, L. Míča, and D. Koutný, “Experimental study on time dependent behaviour of coarse aggregate concrete mixture for 3D construction printing,” Constr. Build. Mater., vol. 376, p. 130999, May. 2023. https://doi.org/10.1016/j.conbuildmat.2023.130999
dc.relation/*ref*/A. R. Arunothayan, B. Nematollahi, K. H. Khayat, A. Ramesh, and J. G. Sanjayan, “Rheological characterization of ultra-high performance concrete for 3D printing,” Cem. Concr. Compos., vol. 136, p. 104854, Feb. 2023. https://doi.org/10.1016/j.cemconcomp.2022.104854
dc.relation/*ref*/M. Chen et al., “Rheological parameters, thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite,” Compos. Part B Eng., vol. 186, p. 107821, Apr. 2020. https://doi.org/10.1016/j.compositesb.2020.107821
dc.relation/*ref*/E. Mina Aydin, B. Kara, Z. Basaran Bundur, N. Ozyurt, O. Bebek, and M. Ali Gulgun, “A comparative evaluation of sepiolite and nano-montmorillonite on the rheology of cementitious materials for 3D printing,” Constr. Build. Mater., vol. 350, p. 128935, Oct. 2022. https://doi.org/10.1016/j.conbuildmat.2022.128935
dc.relation/*ref*/H. Varela, G. Barluenga, and A. Perrot, “Extrusion and structural build-up of 3D printing cement pastes with fly ash, nanoclays and VMAs,” Cem. Concr. Compos., vol. 142, p. 105217, Sep. 2023. https://doi.org/10.1016/j.cemconcomp.2023.105217
dc.relation/*ref*/Y. Chen et al., “Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture,” Cem. Concr. Res., vol. 132, p. 106040, Jun. 2020. https://doi.org/10.1016/j.cemconres.2020.106040
dc.relation/*ref*/H. Christen, G. Van Zijl, and W. De Villiers, “The incorporation of recycled brick aggregate in 3D printed concrete,” Clean. Mater., vol. 4, p. 100090, Jun. 2022. https://doi.org/10.1016/j.clema.2022.100090
dc.relation/*ref*/A. Prevedello Rubin, J. A. Hasse, and W. Longuini Repette, “The evaluation of rheological parameters of 3D printable concretes and the effect of accelerating admixture,” Constr. Build. Mater., vol. 276, p. 122221, Mar. 2021. https://doi.org/10.1016/j.conbuildmat.2020.122221
dc.relation/*ref*/S. Fallah, and M. Nematzadeh, “Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume,” Constr. Build. Mater., vol. 132, pp. 170–187, Feb. 2017. https://doi.org/10.1016/j.conbuildmat.2016.11.100
dc.relation/*ref*/A. Gholampour, T. Ozbakkaloglu, and C.-T. Ng, “Ambient-and oven-cured geopolymer concretes under active confinement,” Constr. Build. Mater., vol. 228, p. 116722, Dec. 2019. https://doi.org/10.1016/j.conbuildmat.2019.116722
dc.relation/*ref*/J. Davidovits, “Geopolymers: inorganic polymeric new materials,” J. Therm. Anal., vol. 37, no. 8, pp. 1633–1656, Aug. 1991. https://doi.org/10.1007/bf01912193
dc.relation/*ref*/S. Hau Bong, M. Xia, B. Nematollahi, and C. Shi, “Ambient temperature cured ‘just-add-water’geopolymer for 3D concrete printing applications,” Cem. Concr. Compos., vol. 121, p. 104060, Aug. 2021. https://doi.org/10.1016/j.cemconcomp.2021.104060
dc.relation/*ref*/C. Miao, X. Cao, B. Tang, S. Rao, and Y. Yuan, “Development of a sustainable cementitious material using phosphogypsum and coal-fired slag for enhanced environmental safety and performance,” Constr. Build. Mater., vol. 458, p. 139705, Jan. 2025. https://doi.org/10.1016/j.conbuildmat.2024.139705
dc.relation/*ref*/E. Ozcelikci, M. Hu, and M. Sahmaran, “Development of Eco-hybrid cement-based green concretes through CDW upcycling: Mechanical performance and environmental profile analysis,” J. Environ. Manage., vol. 377, p. 124564, Mar. 2025. https://doi.org/10.1016/j.jenvman.2025.124564
dc.relation/*ref*/M. Gomaa, J. Carfrae, S. Goodhew, W. Jabi, and A. Veliz Reyes, “Thermal performance exploration of 3D printed cob,” Archit. Sci. Rev., vol. 62, no. 3, pp. 230–237, Apr. 2019. https://doi.org/10.1080/00038628.2019.1606776
dc.relation/*ref*/A. A. Veliz Reyes, M. Gomaa, A. Chatzivasileiadi, W. Jabi, and N. M. Wardhana, “Computing craft: Early development of a robotically-supported cob 3D printing system,” in eCAADe 2018: Computing for a better tomorrow (Vol 1), A. Kępczyńska-Walczak and S. Białkowski, Eds., Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz, Polony: Lodz University of Technology, 2018, pp. 791-800. https://researchportal.plymouth.ac.uk/en/publications/computing-craft-early-development-of-a-robotically-supported-cob-
dc.relation/*ref*/H. Alhumayani, M. Gomaa, V. Soebarto, and W. Jabi, “Environmental assessment of large-scale 3D printing in construction: A comparative study between cob and concrete,” J. Clean. Prod., vol. 270, p. 122463, Oct. 2020. https://doi.org/10.1016/j.jclepro.2020.122463
dc.relation/*ref*/Z. Eugene Bryson, W. V. Srubar, S. Kawashima, and L. Ben-Alon, “Towards 3D Printed Earth-and Bio-Based Insulation Materials: A Case Study on Light Straw Clay,” in 18th Int. Conf. Non-conventional Mater. Technol. NOCMAT 2022, Virtual Repository, Zenodo, 2022. https://doi.org/10.5281/zenodo.6611395
dc.relation/*ref*/K. D. González-Velandia, R. Sánchez-Bernal, D. J. Pita-Castañeda, and L. F. Pérez-Navar, “Caracterización de las propiedades mecánicas de un ladrillo no estructural de tierra como soporte de material vegetal en muros verdes,” Ing. Investig. y Tecnol., vol. 20, no. 3, pp. 1-9, Jul. 2019. https://doi.org/10.22201/fi.25940732e.2019.20n3.030
dc.relation/*ref*/A. Alqenaee, and A. Memari, “Experimental study of 3D printable cob mixtures,” Constr. Build. Mater., vol. 324, p. 126574, Mar. 2022. https://doi.org/10.1016/j.conbuildmat.2022.126574
dc.relation/*ref*/M. Gomaa, J. Vaculik, V. Soebarto, M. Griffith, and W. Jabi, “Feasibility of 3DP cob walls under compression loads in low-rise construction,” Constr. Build. Mater., vol. 301, p. 124079, Sep. 2021. https://doi.org/10.1016/j.conbuildmat.2021.124079
dc.relation/*ref*/B. Panda, S. Chandra Paul, and M. Jen Tan, “Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material,” Mater. Lett., vol. 209, pp. 146–149, Dec. 2017. https://doi.org/10.1016/j.matlet.2017.07.123
dc.relation/*ref*/S. Muthukrishnan, S. Ramakrishnan, and J. Sanjayan, “Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete,” Cem. Concr. Compos., vol. 116, p. 103899, Feb. 2021. https://doi.org/10.1016/j.cemconcomp.2020.103899
dc.relation/*ref*/J. Hui Lim, B. Panda, and Q.-C. Pham, “Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement,” Constr. Build. Mater., vol. 178, pp. 32–41, Jul. 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.010
dc.relation/*ref*/X. Guo, J. Yang, and G. Xiong, “Influence of supplementary cementitious materials on rheological properties of 3D printed fly ash based geopolymer,” Cem. Concr. Compos., vol. 114, p. 103820, Nov. 2020. https://doi.org/10.1016/j.cemconcomp.2020.103820
dc.relation/*ref*/B. Panda, S. Chandra Paul, L. Jian Hui, Y. W. Daniel Tay, and M. Jen Tan, “Additive manufacturing of geopolymer for sustainable built environment,” J. Clean. Prod., vol. 167, pp. 281–288, Nov. 2017. https://doi.org/10.1016/j.jclepro.2017.08.165
dc.relation/*ref*/M. B. Jaji, G. P. A. G. Van Zijl, and A. J. Babafemi, “Slag-modified metakaolin-based geopolymer for 3D concrete printing application: Evaluating fresh and hardened properties,” Clean. Eng. Technol., vol. 15, p. 100665, Aug. 2023. https://doi.org/10.1016/j.clet.2023.100665
dc.relation/*ref*/D.-W. Zhang, D. Wang, X.-Q. Lin, and T. Zhang, “The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes,” Constr. Build. Mater., vol. 184, pp. 575–580, Sep. 2018. https://doi.org/10.1016/j.conbuildmat.2018.06.233
dc.relation/*ref*/B. Panda, C. Unluer, and M. Jen Tan, “Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing,” Compos. Part B Eng., vol. 176, p. 107290, Nov. 2019. https://doi.org/10.1016/j.compositesb.2019.107290
dc.relation/*ref*/M. Chougan, S. Hamidreza Ghaffar, M. Jahanzat, A. Albar, N. Mujaddedi, and R. Swash, “The influence of nano-additives in strengthening mechanical performance of 3D printed multi-binder geopolymer composites,” Constr. Build. Mater., vol. 250, p. 118928, Jul. 2020. https://doi.org/10.1016/j.conbuildmat.2020.118928
dc.relation/*ref*/H. Ilcan, O. Sahin, A. Kul, G. Yildirim, and M. Sahmaran, “Rheological properties and compressive strength of construction and demolition waste-based geopolymer mortars for 3D-Printing,” Constr. Build. Mater., vol. 328, p. 127114, Apr. 2022. https://doi.org/10.1016/j.conbuildmat.2022.127114
dc.relation/*ref*/H. Özkılıç, H. İlcan, E. Aminipour, M. Sönmez Tuğluca, A. Aldemir, and M. Şahmaran, “Bond properties and anisotropy performance of 3D-printed construction and demolition waste-based geopolymers: Effect of operational- and material-oriented parameters,” J. Build. Eng., vol. 78, p. 107688, Nov. 2023. https://doi.org/10.1016/j.jobe.2023.107688
dc.relation/*ref*/L. A. Vergara, and H. A. Colorado, “Additive manufacturing of Portland cement pastes with additions of kaolin, superplastificant and calcium carbonate,” Constr. Build. Mater., vol. 248, p. 118669, Jul. 2020. https://doi.org/10.1016/j.conbuildmat.2020.118669
dc.relation/*ref*/M. O. Mohsen et al., “3D-Printed Clay Enhanced with Graphene Nanoplatelets for Sustainable and Green Construction,” Buildings, vol. 13, no. 9, p. 2321, Sep. 2023. https://doi.org/10.3390/buildings13092321
dc.relation/*ref*/O. Kontovourkis, and G. Tryfonos, “Robotic 3D clay printing of prefabricated non-conventional wall components based on a parametric-integrated design,” Autom. Constr., vol. 110, p. 103005, Feb. 2020. https://doi.org/10.1016/j.autcon.2019.103005
dc.relation/*ref*/Y. Jacquet, and A. Perrot, “Evolutionary Approach Based on Thermoplastic Bio-Based Building Material for 3D Printing Applications: An Insight into a Mix of Clay and Wax,” in Bio-Based Building Materials, S. Amziane, I. Merta and J. Page, Eds., Switzerland: Springer, 2023, pp. 271–279. https://doi.org/10.1007/978-3-031-33465-8_21
dc.relation/*ref*/E. Ordoñez, J. M. Gallego, and H. A. Colorado, “3D printing via the direct ink writing technique of ceramic pastes from typical formulations used in traditional ceramics industry,” Appl. Clay Sci., vol. 182, p. 105285, Dec. 2019. https://doi.org/10.1016/j.clay.2019.105285
dc.relation/*ref*/G. Ji, J. Xiao, P. Zhi, Y.-C. Wu, and N. Han, “Effects of extrusion parameters on properties of 3D printing concrete with coarse aggregates,” Constr. Build. Mater., vol. 325, p. 126740, Mar. 2022. https://doi.org/10.1016/j.conbuildmat.2022.126740
dc.relation/*ref*/Y. Yang, C. Wu, Z. Liu, and H. Zhang, “3D-printing ultra-high performance fiber-reinforced concrete under triaxial confining loads,” Addit. Manuf., vol. 50, p. 102568, Feb. 2022. https://doi.org/10.1016/j.addma.2021.102568
dc.relation/*ref*/G. H. Andrew Ting, Y. W. Daniel Tay, and M. Jen Tan, “Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing,” J. Clean. Prod., vol. 300, p. 126919, Jun. 2021. https://doi.org/10.1016/j.jclepro.2021.126919
dc.relation/*ref*/A. V. Rahul, M. K. Mohan, G. De Schutter, and K. Van Tittelboom, “3D printable concrete with natural and recycled coarse aggregates: Rheological, mechanical and shrinkage behaviour,” Cem. Concr. Compos., vol. 125, p. 104311, Jan. 2022. https://doi.org/10.1016/j.cemconcomp.2021.104311
dc.relation/*ref*/G. Ma, Z. Li, L. Wang, F. Wang, and J. Sanjayan, “Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing,” Constr. Build. Mater., vol. 202, pp. 770–783, Mar. 2019. https://doi.org/10.1016/j.conbuildmat.2019.01.008
dc.relation/*ref*/Z. Li, L. Wang, and G. Ma, “Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions,” Compos. Part B Eng., vol. 187, p. 107796, Apr. 2020. https://doi.org/10.1016/j.compositesb.2020.107796
dc.relation/*ref*/D.-Y. Yoo, S. Kim, G.-J. Park, J.-J. Park, and S.-W. Kim, “Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites,” Compos. Struct., vol. 174, pp. 375–388, Aug. 2017. https://doi.org/10.1016/j.compstruct.2017.04.069
dc.relation/*ref*/V. Saruhan, M. Keskinateş, and B. Felekoğlu, “A comprehensive review on fresh state rheological properties of extrusion mortars designed for 3D printing applications,” Constr. Build. Mater., vol. 337, p. 127629, Jun. 2022. https://doi.org/10.1016/j.conbuildmat.2022.127629
dc.relation/*ref*/B. Zhang, and X. L. Ma, “A review—Pitting corrosion initiation investigated by TEM,” J. Mater. Sci. Technol., vol. 35, no. 7, pp. 1455–1465, Jul. 2019. https://doi.org/10.1016/j.jmst.2019.01.013
dc.relation/*ref*/L. Teng, J. Zhu, K. H. Khayat, and J. Liu, “Effect of welan gum and nanoclay on thixotropy of UHPC,” Cem. Concr. Res., vol. 138, p. 106238, Dec. 2020. https://doi.org/10.1016/j.cemconres.2020.106238
dc.relation/*ref*/D. Marchon, S. Kawashima, H. Bessaies-Bey, S. Mantellato, and S. Ng, “Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry,” Cem. Concr. Res., vol. 112, pp. 96–110, Oct. 2018. https://doi.org/10.1016/j.cemconres.2018.05.014
dc.relation/*ref*/I. Sandalci, M. Mert Tezer, and Z. Basaran Bundur, “Immobilization of bacterial cells on natural minerals for self-healing cement-based materials,” Front. Built Environ., vol. 7, p. 655935, Apr. 2021. https://doi.org/10.3389/fbuil.2021.655935
dc.relation/*ref*/Y. Qian, and G. De Schutter, “Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer (PCE),” Cem. Concr. Res., vol. 111, pp. 15–22, Sep. 2018. https://doi.org/10.1016/j.cemconres.2018.06.013
dc.relation/*ref*/S. Mallakpour, E. Azadi, and C. Mustansar Hussain, “State-of-the-art of 3D printing technology of alginate-based hydrogels—An emerging technique for industrial applications,” Adv. Colloid Interface Sci., vol. 293, p. 102436, Jul. 2021. https://doi.org/10.1016/j.cis.2021.102436
dc.relation/*ref*/T. Funami et al., “Rheological properties of sodium alginate in an aqueous system during gelation in relation to supermolecular structures and Ca2+ binding,” Food Hydrocoll., vol. 23, no. 7, pp. 1746–1755, Oct. 2009. https://doi.org/10.1016/j.foodhyd.2009.02.014
dc.relation/*ref*/Z. Malaeb, F. AlSakka, and F. Hamzeh, “3D Concrete Printing,” in 3D Concrete Printing Technology, Amsterdam, Netherlands: Elsevier, 2019, pp. 115–136. https://www.researchgate.net/publication/280488795_3D_Concrete_Printing_Machine_and_Mix_Design
dc.relation/*ref*/Y. Tarhan, and R. Şahin, “Fresh and rheological performances of air-entrained 3D printable mortars,” Materials (Basel)., vol. 14, no. 9, p. 2409, May. 2021. https://doi.org/10.3390/ma14092409
dc.relation/*ref*/M. Chen, H. Si, X. Fan, Y. Xuan, and M. Zhang, “Dynamic compressive behaviour of recycled tyre steel fibre reinforced concrete,” Constr. Build. Mater., vol. 316, p. 125896, Jan. 2022. https://doi.org/10.1016/j.conbuildmat.2021.125896
dc.relation/*ref*/S. Hau Bong, B. Nematollahi, A. Nazari, M. Xia, and J. Sanjayan, “Efficiency of different superplasticizers and retarders on properties of ‘one-Part’Fly ash-slag blended geopolymers with different activators,” Materials (Basel)., vol. 12, no. 20, p. 3410, Oct. 2019. https://doi.org/10.3390/ma12203410
dc.relation/*ref*/E. Forcael, M. Medina, A. Opazo-Vega, F. Moreno, and G. Pincheira, “Additive manufacturing in the construction industry,” Autom. Constr., vol. 169, p. 105888, Jan. 2025. https://doi.org/10.1016/j.autcon.2024.105888
dc.relation/*ref*/S. H. Khajavi et al., “Additive Manufacturing in the Construction Industry: The Comparative Competitiveness of 3D Concrete Printing”. Appl. Sci., vol. 11, p. 3865, Apr. 2021. https://doi.org/10.3390/app11093865
dc.relation/*ref*/Standard Specification for Chemical Admixtures for Concrete, Advancing Standars Transforming Markets, West Conshohocken, ASTM C494, USA, 2024. [Online]. Available: https://store.astm.org/c0494_c0494m-19e01.html
dc.relation/*ref*/Aditivos Químicos para Concretos, NTC 1299, Icontec, Bogotá, Colombia, 2024. https://tienda.icontec.org/gp-concretos-aditivos-quimicos-para-concreto-ntc1299-2008.html
dc.relation/*ref*/
dc.rightsDerechos de autor 2025 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 28 No. 64 (2025); e3337en-US
dc.sourceTecnoLógicas; Vol. 28 Núm. 64 (2025); e3337es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectconstrucciónes-ES
dc.subjectmanufactura aditivaes-ES
dc.subjectmateriales alternativoses-ES
dc.subjectmodificadoreses-ES
dc.subjectpropiedades reológicases-ES
dc.subjectconstructionen-US
dc.subjectadditive manufacturingen-US
dc.subjectalternative materialsen-US
dc.subjectmodifiersen-US
dc.subjectrheological propertiesen-US
dc.titleEffect of Additives Used in 3D Printing of Portland Cement, Geopolymers and Clay Mixtures: A Reviewen-US
dc.titleEfecto de aditivos utilizados en impresión 3D de mezclas de cemento portland, geopolímeros y arcillas: una revisiónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
3337_v28n64.pdf
Tamaño:
848.13 KB
Formato:
Adobe Portable Document Format