Effect of Additives Used in 3D Printing of Portland Cement, Geopolymers and Clay Mixtures: A Review
| dc.creator | Muñoz-Benavides, Miguel A. | |
| dc.creator | Robayo-Salazar, Rafael | |
| dc.creator | Mejía-de-Gutiérrez, Ruby | |
| dc.date | 2025-08-30 | |
| dc.date.accessioned | 2025-10-01T23:53:16Z | |
| dc.description | Controlling the properties of 3D printing mixtures used in construction processes is a major challenge for engineering and materials science, as it requires the use of additives to facilitate their extrusion and layer-by-layer printing. The objective of this review was to analyze the mix designs reported in the scientific literature related to the use of additives. The methodology employed consisted of a review of the Scopus database on additives used in Portland cement-based mixtures, geopolymers, and clays. The types of additives analyzed include: 1) superplasticizers and water reducing additives, which influence fluidity, elastic limit and mechanical resistance, favoring pumpability and extrusion capacity; 2) additives that modify viscosity and rheological properties, which affect static and dynamic flow efficiency, thixotropy, and contribute to increased buildability and printing quality; and 3) setting and hardening regulators, which modify the cement hydration process and have a direct influence on the open time of the mixes. Analysis of the results allowed us to identify critical rheological properties that must be optimized during the design of 3D printing mixes, such as viscosity, thixotropy, and extrusion time. It is concluded that it is important to consider these factors when selecting the additives required in 3D printing mixtures, especially in the case of alternative materials such as geopolymers and clays. The information reported in this review is essential for designers, researchers, and producers interested in exploring the additive manufacturing of these construction materials. | en-US |
| dc.description | El control de las propiedades de las mezclas de impresión 3D aptas para emplear en procesos constructivos es un gran reto para la ingeniería y la ciencia de los materiales, ya que se requiere el uso de aditivos para facilitar su extrusión e impresión capa a capa. El objetivo fue analizar los diseños de mezclas reportados en la literatura científica relacionados con el uso de aditivos. La metodología empleada consistió en la revisión en la base de datos Scopus sobre aditivos utilizados en mezclas basadas en cemento Portland, geopolímeros y arcillas. Los tipos de aditivos incluyen: 1) aditivos superplastificantes y reductores de agua que influyen sobre la fluidez, límite elástico y resistencia mecánica, favoreciendo la bombeabilidad y capacidad de extrusión; 2) aditivos modificadores de la viscosidad y propiedades reológicas, que afectan el esfuerzo de fluencia estático y dinámico, la tixotropía, y contribuyen al aumento de la edificabilidad y calidad de la impresión; y 3) aditivos reguladores de fraguado y endurecimiento, que modifican el proceso de hidratación del cemento, teniendo una influencia directa sobre el tiempo abierto (open time) de las mezclas. El análisis de los resultados permitió identificar las propiedades reológicas críticas que deben ser optimizadas durante el diseño de la mezcla, como la viscosidad, la tixotropía y el tiempo de extrusión. Además, se destaca que, aunque los estudios sobre estos aditivos y sus efectos son abundantes, persisten limitaciones en la evaluación detallada de sus interacciones y su impacto a largo plazo en la durabilidad de las estructuras impresas. Se concluye la importancia de considerar estos factores al seleccionar los aditivos necesarios para mezclas de impresión 3D, especialmente cuando se usan materiales alternativos como geopolímeros y arcillas. La información reportada en esta revisión es fundamental para diseñadores, investigadores y productores interesados en utilizar la manufactura aditiva de materiales de construcción. | es-ES |
| dc.format | application/pdf | |
| dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3337 | |
| dc.identifier | 10.22430/22565337.3337 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12622/7938 | |
| dc.language | spa | |
| dc.publisher | Instituto Tecnológico Metropolitano (ITM) | es-ES |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3337/3722 | |
| dc.relation | /*ref*/R. Robayo-Salazar, R. Mejía de Gutiérrez, M. A. Villaquirán-Caicedo, and S. Delvasto Arjona, “3D printing with cementitious materials: Challenges and opportunities for the construction sector,” Autom. Constr., vol. 146, p. 104693, Feb. 2023. https://doi.org/10.1016/j.autcon.2022.104693 | |
| dc.relation | /*ref*/M. Nodehi, F. Aguayo, S. Edin Nodehi, A. Gholampour, T. Ozbakkaloglu, and O. Gencel, “Durability properties of 3D printed concrete (3DPC),” Autom. Constr., vol. 142, p. 104479, Oct. 2022. https://doi.org/10.1016/j.autcon.2022.104479 | |
| dc.relation | /*ref*/M. Hojati et al., “3D-printable quaternary cementitious materials towards sustainable development: Mixture design and mechanical properties,” Results Eng., vol. 13, p. 100341, Mar. 2022. https://doi.org/10.1016/j.rineng.2022.10034 | |
| dc.relation | /*ref*/Z. Li et al., “Fresh and hardened properties of extrusion-based 3D-printed cementitious materials: A review,” Sustainability, vol. 12, no. 14, p. 5628, Jul. 2020. https://doi.org/10.3390/su12145628 | |
| dc.relation | /*ref*/G. Ma, L. Wang, and Y. Ju, “State-of-the-art of 3D printing technology of cementitious material—An emerging technique for construction,” Sci. China Technol. Sci., vol. 61, pp. 475–495, Apr. 2018. https://doi.org/10.1007/s11431-016-9077-7 | |
| dc.relation | /*ref*/G. De Schutter, K. Lesage, V. Mechtcherine, V. Naidu Nerella, G. Habert, and I. Agusti-Juan, “Vision of 3D printing with concrete—Technical, economic and environmental potentials,” Cem. Concr. Res., vol. 112, pp. 25–36, Oct. 2018. https://doi.org/10.1016/j.cemconres.2018.06.001 | |
| dc.relation | /*ref*/T. Ivanova, A. Harizanova, T. Koutzarova, and B. Vertruyen, “Sol-gel derived ZnO:Y nanostructured films: Structural and optical study,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 532, pp. 363–368, Nov. 2017. https://doi.org/10.1016/j.colsurfa.2017.04.065 | |
| dc.relation | /*ref*/J. Prinsloo, S. Sinha, and B. Von Solms, “A review of industry 4.0 manufacturing process security risks,” Appl. Sci., vol. 9, no. 23, p. 5105, Nov. 2019. https://doi.org/10.3390/app9235105 | |
| dc.relation | /*ref*/M. Nodehi, T. Ozbakkaloglu, and A. Gholampour, “Effect of supplementary cementitious materials on properties of 3D printed conventional and alkali-activated concrete: A review,” Autom. Constr., vol. 138, p. 104215, Jun. 2022. https://doi.org/10.1016/j.autcon.2022.104215 | |
| dc.relation | /*ref*/M. A. Muñoz, D. A. Rincón, R. Robayo-Salazar, and R. Mejía de Gutiérrez, “Desarrollo de mezclas para impresión 3D basadas en cemento portland y adiciones de metacaolín, micro sílice y carbonato,” Ing. Compet., vol. 25, no. 4, p. e–20113116, Sep. 2023. https://doi.org/10.25100/iyc.v25i4.13116 | |
| dc.relation | /*ref*/K. Manikandan, K. Wi, X. Zhang, K. Wang, and H. Qin, “Characterizing cement mixtures for concrete 3D printing,” Manuf. Lett., vol. 24, pp. 33–37, Apr. 2020. https://doi.org/10.1016/j.mfglet.2020.03.002 | |
| dc.relation | /*ref*/A. Kazemian, X. Yuan, R. Meier, and B. Khoshnevis, “Performance-based testing of Portland cement concrete for construction-scale 3D printing,” in 3D concrete printing technology, J. G. Sanjayan, A. Nazari, and B. Nematollahi, Eds., Amsterdam, Netherlands: Elsevier, 2019, pp. 13–35. https://doi.org/10.1016/B978-0-12-815481-6.00002-6 | |
| dc.relation | /*ref*/B. Panda, C. Unluer, and M. Jen Tan, “Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing,” Cem. Concr. Compos., vol. 94, pp. 307–314, Nov. 2018. https://doi.org/10.1016/j.cemconcomp.2018.10.002 | |
| dc.relation | /*ref*/O. Şahin, H. İlcan, A. Tolga Ateşli, A. Kul, G. Yıldırım, and M. Şahmaran, “Construction and demolition waste-based geopolymers suited for use in 3-dimensional additive manufacturing,” Cem. Concr. Compos., vol. 121, p. 104088, Aug. 2021. https://doi.org/10.1016/j.cemconcomp.2021.104088 | |
| dc.relation | /*ref*/S. Rückrich, G. Agranati, and Y. Jacob Grobman, “Earth-based additive manufacturing: A field-oriented methodology for evaluating material printability,” Archit. Sci. Rev., vol. 66, no. 2, pp. 133–143, Dec. 2023. https://doi.org/10.1080/00038628.2022.2154739 | |
| dc.relation | /*ref*/G. Silva, L. Quispe, S. Kim, J. Nakamatsu, and R. Aguilar, “Development of a stabilized natural fiber-reinforced earth composite for construction applications using 3D printing,” IOP Conf. Series: Mater. Sci. Engin., vol. 706, no. 1, p. 12015, Nov. 2019. https://doi.org/10.1088/1757-899X/706/1/012015 | |
| dc.relation | /*ref*/N. Roussel, “Rheological requirements for printable concretes,” Cem. Concr. Res., vol. 112, pp. 76–85, Oct. 2018. https://doi.org/10.1016/j.cemconres.2018.04.005 | |
| dc.relation | /*ref*/M. Tramontin Souza et al., “Role of chemical admixtures on 3D printed Portland cement: Assessing rheology and buildability,” Constr. Build. Mater., vol. 314, no. Part A, p. 125666, Jan. 2022. https://doi.org/10.1016/j.conbuildmat.2021.125666 | |
| dc.relation | /*ref*/T. T. Le et al., “Hardened properties of high-performance printing concrete,” Cem. Concr. Res., vol. 42, no. 3, pp. 558–566, Mar. 2012. https://doi.org/10.1016/j.cemconres.2011.12.003 | |
| dc.relation | /*ref*/A. Kazemian, X. Yuan, E. Cochran, and B. Khoshnevis, “Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture,” Constr. Build. Mater., vol. 145, pp. 639–647, Aug. 2017. https://doi.org/10.1016/j.conbuildmat.2017.04.015 | |
| dc.relation | /*ref*/M. Tramontin Souza et al., “Role of temperature in 3D printed geopolymers: Evaluating rheology and buildability,” Mater. Lett., vol. 293, p. 129680, Jun. 2021. https://doi.org/10.1016/j.matlet.2021.129680 | |
| dc.relation | /*ref*/S. Kristombu Baduge et al., “Improving performance of additive manufactured (3D printed) concrete: A review on material mix design, processing, interlayer bonding, and reinforcing methods,” Structures, vol. 29. pp. 1597–1609, Feb. 2021. https://doi.org/10.1016/j.istruc.2020.12.061 | |
| dc.relation | /*ref*/M. S. Khan, F. Sanchez, and H. Zhou, “3-D printing of concrete: Beyond horizons,” Cem. Concr. Res., vol. 133, p. 106070, Jul. 2020. https://doi.org/10.1016/j.cemconres.2020.106070 | |
| dc.relation | /*ref*/Additive Manufacturing - General Principles - Terminology, ASTM/ISO 52900, Advancing Standars Transforming Markets, and International Organization for Standardization, West Conshohocken, USA, 2021. [Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-astm:52900:dis:ed-2:v1:en | |
| dc.relation | /*ref*/D. Grossin et al., “A review of additive manufacturing of ceramics by powder bed selective laser processing (sintering / melting): Calcium phosphate, silicon carbide, zirconia, alumina, and their composites,” Open Ceram., vol. 5, p. 100073, Mar. 2021. https://doi.org/10.1016/j.oceram.2021.100073 | |
| dc.relation | /*ref*/M. A. Khan, “Mix suitable for concrete 3D printing: A review,” Mater. Today Proc., vol. 32, no. Part 4, pp. 831–837, 2020. https://doi.org/10.1016/j.matpr.2020.03.825 | |
| dc.relation | /*ref*/A. Perrot, D. Rangeard, and E. Courteille, “3D printing of earth-based materials: Processing aspects,” Constr. Build. Mater., vol. 172, pp. 670–676, May. 2018. https://doi.org/10.1016/j.conbuildmat.2018.04.017 | |
| dc.relation | /*ref*/M. Tramontin Souza, I. M. Ferreira, E. Guzi de Moraes, L. Senff, and A. P. Novaes de Oliveira, “3D printed concrete for large-scale buildings: An overview of rheology, printing parameters, chemical admixtures, reinforcements, and economic and environmental prospects,” J. Build. Eng., vol. 32, p. 101833, Nov. 2020. https://doi.org/10.1016/j.jobe.2020.101833 | |
| dc.relation | /*ref*/M. V. Tran, Y. T. H. Cu, and C. V. H. Le, “Rheology and shrinkage of concrete using polypropylene fiber for 3D concrete printing,” J. Build. Eng., vol. 44, p. 103400, Dec. 2021. https://doi.org/10.1016/j.jobe.2021.103400 | |
| dc.relation | /*ref*/P. Sikora et al., “The effects of nano-and micro-sized additives on 3D printable cementitious and alkali-activated composites: A review,” Appl. Nanosci., vol. 12, no. 4, pp. 805–823, Apr. 2022. https://doi.org/10.1007/s13204-021-01738-2 | |
| dc.relation | /*ref*/A. Vespalec, J. Podroužek, J. Boštík, L. Míča, and D. Koutný, “Experimental study on time dependent behaviour of coarse aggregate concrete mixture for 3D construction printing,” Constr. Build. Mater., vol. 376, p. 130999, May. 2023. https://doi.org/10.1016/j.conbuildmat.2023.130999 | |
| dc.relation | /*ref*/A. R. Arunothayan, B. Nematollahi, K. H. Khayat, A. Ramesh, and J. G. Sanjayan, “Rheological characterization of ultra-high performance concrete for 3D printing,” Cem. Concr. Compos., vol. 136, p. 104854, Feb. 2023. https://doi.org/10.1016/j.cemconcomp.2022.104854 | |
| dc.relation | /*ref*/M. Chen et al., “Rheological parameters, thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite,” Compos. Part B Eng., vol. 186, p. 107821, Apr. 2020. https://doi.org/10.1016/j.compositesb.2020.107821 | |
| dc.relation | /*ref*/E. Mina Aydin, B. Kara, Z. Basaran Bundur, N. Ozyurt, O. Bebek, and M. Ali Gulgun, “A comparative evaluation of sepiolite and nano-montmorillonite on the rheology of cementitious materials for 3D printing,” Constr. Build. Mater., vol. 350, p. 128935, Oct. 2022. https://doi.org/10.1016/j.conbuildmat.2022.128935 | |
| dc.relation | /*ref*/H. Varela, G. Barluenga, and A. Perrot, “Extrusion and structural build-up of 3D printing cement pastes with fly ash, nanoclays and VMAs,” Cem. Concr. Compos., vol. 142, p. 105217, Sep. 2023. https://doi.org/10.1016/j.cemconcomp.2023.105217 | |
| dc.relation | /*ref*/Y. Chen et al., “Improving printability of limestone-calcined clay-based cementitious materials by using viscosity-modifying admixture,” Cem. Concr. Res., vol. 132, p. 106040, Jun. 2020. https://doi.org/10.1016/j.cemconres.2020.106040 | |
| dc.relation | /*ref*/H. Christen, G. Van Zijl, and W. De Villiers, “The incorporation of recycled brick aggregate in 3D printed concrete,” Clean. Mater., vol. 4, p. 100090, Jun. 2022. https://doi.org/10.1016/j.clema.2022.100090 | |
| dc.relation | /*ref*/A. Prevedello Rubin, J. A. Hasse, and W. Longuini Repette, “The evaluation of rheological parameters of 3D printable concretes and the effect of accelerating admixture,” Constr. Build. Mater., vol. 276, p. 122221, Mar. 2021. https://doi.org/10.1016/j.conbuildmat.2020.122221 | |
| dc.relation | /*ref*/S. Fallah, and M. Nematzadeh, “Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume,” Constr. Build. Mater., vol. 132, pp. 170–187, Feb. 2017. https://doi.org/10.1016/j.conbuildmat.2016.11.100 | |
| dc.relation | /*ref*/A. Gholampour, T. Ozbakkaloglu, and C.-T. Ng, “Ambient-and oven-cured geopolymer concretes under active confinement,” Constr. Build. Mater., vol. 228, p. 116722, Dec. 2019. https://doi.org/10.1016/j.conbuildmat.2019.116722 | |
| dc.relation | /*ref*/J. Davidovits, “Geopolymers: inorganic polymeric new materials,” J. Therm. Anal., vol. 37, no. 8, pp. 1633–1656, Aug. 1991. https://doi.org/10.1007/bf01912193 | |
| dc.relation | /*ref*/S. Hau Bong, M. Xia, B. Nematollahi, and C. Shi, “Ambient temperature cured ‘just-add-water’geopolymer for 3D concrete printing applications,” Cem. Concr. Compos., vol. 121, p. 104060, Aug. 2021. https://doi.org/10.1016/j.cemconcomp.2021.104060 | |
| dc.relation | /*ref*/C. Miao, X. Cao, B. Tang, S. Rao, and Y. Yuan, “Development of a sustainable cementitious material using phosphogypsum and coal-fired slag for enhanced environmental safety and performance,” Constr. Build. Mater., vol. 458, p. 139705, Jan. 2025. https://doi.org/10.1016/j.conbuildmat.2024.139705 | |
| dc.relation | /*ref*/E. Ozcelikci, M. Hu, and M. Sahmaran, “Development of Eco-hybrid cement-based green concretes through CDW upcycling: Mechanical performance and environmental profile analysis,” J. Environ. Manage., vol. 377, p. 124564, Mar. 2025. https://doi.org/10.1016/j.jenvman.2025.124564 | |
| dc.relation | /*ref*/M. Gomaa, J. Carfrae, S. Goodhew, W. Jabi, and A. Veliz Reyes, “Thermal performance exploration of 3D printed cob,” Archit. Sci. Rev., vol. 62, no. 3, pp. 230–237, Apr. 2019. https://doi.org/10.1080/00038628.2019.1606776 | |
| dc.relation | /*ref*/A. A. Veliz Reyes, M. Gomaa, A. Chatzivasileiadi, W. Jabi, and N. M. Wardhana, “Computing craft: Early development of a robotically-supported cob 3D printing system,” in eCAADe 2018: Computing for a better tomorrow (Vol 1), A. Kępczyńska-Walczak and S. Białkowski, Eds., Faculty of Civil Engineering, Architecture and Environmental Engineering, Lodz, Polony: Lodz University of Technology, 2018, pp. 791-800. https://researchportal.plymouth.ac.uk/en/publications/computing-craft-early-development-of-a-robotically-supported-cob- | |
| dc.relation | /*ref*/H. Alhumayani, M. Gomaa, V. Soebarto, and W. Jabi, “Environmental assessment of large-scale 3D printing in construction: A comparative study between cob and concrete,” J. Clean. Prod., vol. 270, p. 122463, Oct. 2020. https://doi.org/10.1016/j.jclepro.2020.122463 | |
| dc.relation | /*ref*/Z. Eugene Bryson, W. V. Srubar, S. Kawashima, and L. Ben-Alon, “Towards 3D Printed Earth-and Bio-Based Insulation Materials: A Case Study on Light Straw Clay,” in 18th Int. Conf. Non-conventional Mater. Technol. NOCMAT 2022, Virtual Repository, Zenodo, 2022. https://doi.org/10.5281/zenodo.6611395 | |
| dc.relation | /*ref*/K. D. González-Velandia, R. Sánchez-Bernal, D. J. Pita-Castañeda, and L. F. Pérez-Navar, “Caracterización de las propiedades mecánicas de un ladrillo no estructural de tierra como soporte de material vegetal en muros verdes,” Ing. Investig. y Tecnol., vol. 20, no. 3, pp. 1-9, Jul. 2019. https://doi.org/10.22201/fi.25940732e.2019.20n3.030 | |
| dc.relation | /*ref*/A. Alqenaee, and A. Memari, “Experimental study of 3D printable cob mixtures,” Constr. Build. Mater., vol. 324, p. 126574, Mar. 2022. https://doi.org/10.1016/j.conbuildmat.2022.126574 | |
| dc.relation | /*ref*/M. Gomaa, J. Vaculik, V. Soebarto, M. Griffith, and W. Jabi, “Feasibility of 3DP cob walls under compression loads in low-rise construction,” Constr. Build. Mater., vol. 301, p. 124079, Sep. 2021. https://doi.org/10.1016/j.conbuildmat.2021.124079 | |
| dc.relation | /*ref*/B. Panda, S. Chandra Paul, and M. Jen Tan, “Anisotropic mechanical performance of 3D printed fiber reinforced sustainable construction material,” Mater. Lett., vol. 209, pp. 146–149, Dec. 2017. https://doi.org/10.1016/j.matlet.2017.07.123 | |
| dc.relation | /*ref*/S. Muthukrishnan, S. Ramakrishnan, and J. Sanjayan, “Effect of alkali reactions on the rheology of one-part 3D printable geopolymer concrete,” Cem. Concr. Compos., vol. 116, p. 103899, Feb. 2021. https://doi.org/10.1016/j.cemconcomp.2020.103899 | |
| dc.relation | /*ref*/J. Hui Lim, B. Panda, and Q.-C. Pham, “Improving flexural characteristics of 3D printed geopolymer composites with in-process steel cable reinforcement,” Constr. Build. Mater., vol. 178, pp. 32–41, Jul. 2018. https://doi.org/10.1016/j.conbuildmat.2018.05.010 | |
| dc.relation | /*ref*/X. Guo, J. Yang, and G. Xiong, “Influence of supplementary cementitious materials on rheological properties of 3D printed fly ash based geopolymer,” Cem. Concr. Compos., vol. 114, p. 103820, Nov. 2020. https://doi.org/10.1016/j.cemconcomp.2020.103820 | |
| dc.relation | /*ref*/B. Panda, S. Chandra Paul, L. Jian Hui, Y. W. Daniel Tay, and M. Jen Tan, “Additive manufacturing of geopolymer for sustainable built environment,” J. Clean. Prod., vol. 167, pp. 281–288, Nov. 2017. https://doi.org/10.1016/j.jclepro.2017.08.165 | |
| dc.relation | /*ref*/M. B. Jaji, G. P. A. G. Van Zijl, and A. J. Babafemi, “Slag-modified metakaolin-based geopolymer for 3D concrete printing application: Evaluating fresh and hardened properties,” Clean. Eng. Technol., vol. 15, p. 100665, Aug. 2023. https://doi.org/10.1016/j.clet.2023.100665 | |
| dc.relation | /*ref*/D.-W. Zhang, D. Wang, X.-Q. Lin, and T. Zhang, “The study of the structure rebuilding and yield stress of 3D printing geopolymer pastes,” Constr. Build. Mater., vol. 184, pp. 575–580, Sep. 2018. https://doi.org/10.1016/j.conbuildmat.2018.06.233 | |
| dc.relation | /*ref*/B. Panda, C. Unluer, and M. Jen Tan, “Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing,” Compos. Part B Eng., vol. 176, p. 107290, Nov. 2019. https://doi.org/10.1016/j.compositesb.2019.107290 | |
| dc.relation | /*ref*/M. Chougan, S. Hamidreza Ghaffar, M. Jahanzat, A. Albar, N. Mujaddedi, and R. Swash, “The influence of nano-additives in strengthening mechanical performance of 3D printed multi-binder geopolymer composites,” Constr. Build. Mater., vol. 250, p. 118928, Jul. 2020. https://doi.org/10.1016/j.conbuildmat.2020.118928 | |
| dc.relation | /*ref*/H. Ilcan, O. Sahin, A. Kul, G. Yildirim, and M. Sahmaran, “Rheological properties and compressive strength of construction and demolition waste-based geopolymer mortars for 3D-Printing,” Constr. Build. Mater., vol. 328, p. 127114, Apr. 2022. https://doi.org/10.1016/j.conbuildmat.2022.127114 | |
| dc.relation | /*ref*/H. Özkılıç, H. İlcan, E. Aminipour, M. Sönmez Tuğluca, A. Aldemir, and M. Şahmaran, “Bond properties and anisotropy performance of 3D-printed construction and demolition waste-based geopolymers: Effect of operational- and material-oriented parameters,” J. Build. Eng., vol. 78, p. 107688, Nov. 2023. https://doi.org/10.1016/j.jobe.2023.107688 | |
| dc.relation | /*ref*/L. A. Vergara, and H. A. Colorado, “Additive manufacturing of Portland cement pastes with additions of kaolin, superplastificant and calcium carbonate,” Constr. Build. Mater., vol. 248, p. 118669, Jul. 2020. https://doi.org/10.1016/j.conbuildmat.2020.118669 | |
| dc.relation | /*ref*/M. O. Mohsen et al., “3D-Printed Clay Enhanced with Graphene Nanoplatelets for Sustainable and Green Construction,” Buildings, vol. 13, no. 9, p. 2321, Sep. 2023. https://doi.org/10.3390/buildings13092321 | |
| dc.relation | /*ref*/O. Kontovourkis, and G. Tryfonos, “Robotic 3D clay printing of prefabricated non-conventional wall components based on a parametric-integrated design,” Autom. Constr., vol. 110, p. 103005, Feb. 2020. https://doi.org/10.1016/j.autcon.2019.103005 | |
| dc.relation | /*ref*/Y. Jacquet, and A. Perrot, “Evolutionary Approach Based on Thermoplastic Bio-Based Building Material for 3D Printing Applications: An Insight into a Mix of Clay and Wax,” in Bio-Based Building Materials, S. Amziane, I. Merta and J. Page, Eds., Switzerland: Springer, 2023, pp. 271–279. https://doi.org/10.1007/978-3-031-33465-8_21 | |
| dc.relation | /*ref*/E. Ordoñez, J. M. Gallego, and H. A. Colorado, “3D printing via the direct ink writing technique of ceramic pastes from typical formulations used in traditional ceramics industry,” Appl. Clay Sci., vol. 182, p. 105285, Dec. 2019. https://doi.org/10.1016/j.clay.2019.105285 | |
| dc.relation | /*ref*/G. Ji, J. Xiao, P. Zhi, Y.-C. Wu, and N. Han, “Effects of extrusion parameters on properties of 3D printing concrete with coarse aggregates,” Constr. Build. Mater., vol. 325, p. 126740, Mar. 2022. https://doi.org/10.1016/j.conbuildmat.2022.126740 | |
| dc.relation | /*ref*/Y. Yang, C. Wu, Z. Liu, and H. Zhang, “3D-printing ultra-high performance fiber-reinforced concrete under triaxial confining loads,” Addit. Manuf., vol. 50, p. 102568, Feb. 2022. https://doi.org/10.1016/j.addma.2021.102568 | |
| dc.relation | /*ref*/G. H. Andrew Ting, Y. W. Daniel Tay, and M. Jen Tan, “Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing,” J. Clean. Prod., vol. 300, p. 126919, Jun. 2021. https://doi.org/10.1016/j.jclepro.2021.126919 | |
| dc.relation | /*ref*/A. V. Rahul, M. K. Mohan, G. De Schutter, and K. Van Tittelboom, “3D printable concrete with natural and recycled coarse aggregates: Rheological, mechanical and shrinkage behaviour,” Cem. Concr. Compos., vol. 125, p. 104311, Jan. 2022. https://doi.org/10.1016/j.cemconcomp.2021.104311 | |
| dc.relation | /*ref*/G. Ma, Z. Li, L. Wang, F. Wang, and J. Sanjayan, “Mechanical anisotropy of aligned fiber reinforced composite for extrusion-based 3D printing,” Constr. Build. Mater., vol. 202, pp. 770–783, Mar. 2019. https://doi.org/10.1016/j.conbuildmat.2019.01.008 | |
| dc.relation | /*ref*/Z. Li, L. Wang, and G. Ma, “Mechanical improvement of continuous steel microcable reinforced geopolymer composites for 3D printing subjected to different loading conditions,” Compos. Part B Eng., vol. 187, p. 107796, Apr. 2020. https://doi.org/10.1016/j.compositesb.2020.107796 | |
| dc.relation | /*ref*/D.-Y. Yoo, S. Kim, G.-J. Park, J.-J. Park, and S.-W. Kim, “Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites,” Compos. Struct., vol. 174, pp. 375–388, Aug. 2017. https://doi.org/10.1016/j.compstruct.2017.04.069 | |
| dc.relation | /*ref*/V. Saruhan, M. Keskinateş, and B. Felekoğlu, “A comprehensive review on fresh state rheological properties of extrusion mortars designed for 3D printing applications,” Constr. Build. Mater., vol. 337, p. 127629, Jun. 2022. https://doi.org/10.1016/j.conbuildmat.2022.127629 | |
| dc.relation | /*ref*/B. Zhang, and X. L. Ma, “A review—Pitting corrosion initiation investigated by TEM,” J. Mater. Sci. Technol., vol. 35, no. 7, pp. 1455–1465, Jul. 2019. https://doi.org/10.1016/j.jmst.2019.01.013 | |
| dc.relation | /*ref*/L. Teng, J. Zhu, K. H. Khayat, and J. Liu, “Effect of welan gum and nanoclay on thixotropy of UHPC,” Cem. Concr. Res., vol. 138, p. 106238, Dec. 2020. https://doi.org/10.1016/j.cemconres.2020.106238 | |
| dc.relation | /*ref*/D. Marchon, S. Kawashima, H. Bessaies-Bey, S. Mantellato, and S. Ng, “Hydration and rheology control of concrete for digital fabrication: Potential admixtures and cement chemistry,” Cem. Concr. Res., vol. 112, pp. 96–110, Oct. 2018. https://doi.org/10.1016/j.cemconres.2018.05.014 | |
| dc.relation | /*ref*/I. Sandalci, M. Mert Tezer, and Z. Basaran Bundur, “Immobilization of bacterial cells on natural minerals for self-healing cement-based materials,” Front. Built Environ., vol. 7, p. 655935, Apr. 2021. https://doi.org/10.3389/fbuil.2021.655935 | |
| dc.relation | /*ref*/Y. Qian, and G. De Schutter, “Enhancing thixotropy of fresh cement pastes with nanoclay in presence of polycarboxylate ether superplasticizer (PCE),” Cem. Concr. Res., vol. 111, pp. 15–22, Sep. 2018. https://doi.org/10.1016/j.cemconres.2018.06.013 | |
| dc.relation | /*ref*/S. Mallakpour, E. Azadi, and C. Mustansar Hussain, “State-of-the-art of 3D printing technology of alginate-based hydrogels—An emerging technique for industrial applications,” Adv. Colloid Interface Sci., vol. 293, p. 102436, Jul. 2021. https://doi.org/10.1016/j.cis.2021.102436 | |
| dc.relation | /*ref*/T. Funami et al., “Rheological properties of sodium alginate in an aqueous system during gelation in relation to supermolecular structures and Ca2+ binding,” Food Hydrocoll., vol. 23, no. 7, pp. 1746–1755, Oct. 2009. https://doi.org/10.1016/j.foodhyd.2009.02.014 | |
| dc.relation | /*ref*/Z. Malaeb, F. AlSakka, and F. Hamzeh, “3D Concrete Printing,” in 3D Concrete Printing Technology, Amsterdam, Netherlands: Elsevier, 2019, pp. 115–136. https://www.researchgate.net/publication/280488795_3D_Concrete_Printing_Machine_and_Mix_Design | |
| dc.relation | /*ref*/Y. Tarhan, and R. Şahin, “Fresh and rheological performances of air-entrained 3D printable mortars,” Materials (Basel)., vol. 14, no. 9, p. 2409, May. 2021. https://doi.org/10.3390/ma14092409 | |
| dc.relation | /*ref*/M. Chen, H. Si, X. Fan, Y. Xuan, and M. Zhang, “Dynamic compressive behaviour of recycled tyre steel fibre reinforced concrete,” Constr. Build. Mater., vol. 316, p. 125896, Jan. 2022. https://doi.org/10.1016/j.conbuildmat.2021.125896 | |
| dc.relation | /*ref*/S. Hau Bong, B. Nematollahi, A. Nazari, M. Xia, and J. Sanjayan, “Efficiency of different superplasticizers and retarders on properties of ‘one-Part’Fly ash-slag blended geopolymers with different activators,” Materials (Basel)., vol. 12, no. 20, p. 3410, Oct. 2019. https://doi.org/10.3390/ma12203410 | |
| dc.relation | /*ref*/E. Forcael, M. Medina, A. Opazo-Vega, F. Moreno, and G. Pincheira, “Additive manufacturing in the construction industry,” Autom. Constr., vol. 169, p. 105888, Jan. 2025. https://doi.org/10.1016/j.autcon.2024.105888 | |
| dc.relation | /*ref*/S. H. Khajavi et al., “Additive Manufacturing in the Construction Industry: The Comparative Competitiveness of 3D Concrete Printing”. Appl. Sci., vol. 11, p. 3865, Apr. 2021. https://doi.org/10.3390/app11093865 | |
| dc.relation | /*ref*/Standard Specification for Chemical Admixtures for Concrete, Advancing Standars Transforming Markets, West Conshohocken, ASTM C494, USA, 2024. [Online]. Available: https://store.astm.org/c0494_c0494m-19e01.html | |
| dc.relation | /*ref*/Aditivos Químicos para Concretos, NTC 1299, Icontec, Bogotá, Colombia, 2024. https://tienda.icontec.org/gp-concretos-aditivos-quimicos-para-concreto-ntc1299-2008.html | |
| dc.relation | /*ref*/ | |
| dc.rights | Derechos de autor 2025 TecnoLógicas | es-ES |
| dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0 | es-ES |
| dc.source | TecnoLógicas; Vol. 28 No. 64 (2025); e3337 | en-US |
| dc.source | TecnoLógicas; Vol. 28 Núm. 64 (2025); e3337 | es-ES |
| dc.source | 2256-5337 | |
| dc.source | 0123-7799 | |
| dc.subject | construcción | es-ES |
| dc.subject | manufactura aditiva | es-ES |
| dc.subject | materiales alternativos | es-ES |
| dc.subject | modificadores | es-ES |
| dc.subject | propiedades reológicas | es-ES |
| dc.subject | construction | en-US |
| dc.subject | additive manufacturing | en-US |
| dc.subject | alternative materials | en-US |
| dc.subject | modifiers | en-US |
| dc.subject | rheological properties | en-US |
| dc.title | Effect of Additives Used in 3D Printing of Portland Cement, Geopolymers and Clay Mixtures: A Review | en-US |
| dc.title | Efecto de aditivos utilizados en impresión 3D de mezclas de cemento portland, geopolímeros y arcillas: una revisión | es-ES |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |
| dc.type | Review Article | en-US |
| dc.type | Artículos de revisión | es-ES |
Archivos
Bloque original
1 - 1 de 1