Dissolved Air Flotation: A Review from the Perspective of System Parameters and Uses in Wastewater Treatment

dc.creatorMuñoz-Alegría, Jeimmy Adriana
dc.creatorMuñoz-España, Elena
dc.creatorFlórez-Marulanda, Juan Fernando
dc.date2021-12-16
dc.date.accessioned2025-10-01T23:52:45Z
dc.descriptionThe current issues of climate change and high freshwater demand worldwide have promoted the implementation of wastewater reclamation technologies. This study aims to review the efficiency of the dissolved air flotation (DAF) technique in a wide variety of applications in the agricultural, industrial, domestic, and municipal sectors, which have high freshwater consumption worldwide. We made a systematic review of the DAF technique in wastewater treatment in 2015-2021. We reviewed six indexed databases and governmental statistical reports; we used the keywords: dissolved air flotation, microbubbles, wastewater treatment, and the main operating and design parameters involved in the effectiveness of the flotation process. Additionally, we conducted a review of the most common synthetic coagulant studies used with DAF, as well as natural coagulants that promise to mitigate current climate change. Finally, we discussed advantages, disadvantages, and potential future studies. DAF to have considerable potential for wastewater treatment, as well as for waste utilization. The generation of large quantities of DAF sludge is a breakthrough for clean energy production, as it allows the use of this waste for biogas production.en-US
dc.descriptionLa actual problemática de cambio climático y alta demanda de agua dulce a nivel mundial ha promovido la implementación de tecnologías para la regeneración de las aguas residuales. El objetivo de este estudio es revisar la eficiencia del sistema de flotación por aire disuelto (DAF) en una amplia variedad de aplicaciones en los sectores agrícola, industrial, doméstico y municipal, los cuales presentan un elevado consumo de agua dulce en el mundo. Por tal motivo se realizó una revisión sistemática de la técnica de DAF utilizada para el tratamiento de aguas residuales en el periodo 2015-2021. Se revisaron seis bases de datos indexadas y reportes estadísticos gubernamentales, las palabras claves fueron flotación por aire disuelto, microburbujas, tratamiento de aguas residuales y los principales parámetros de operación y diseño que intervienen en la eficacia del proceso de flotación, junto con un análisis de los estudios de coagulantes sintéticos más comunes utilizados con DAF, así como de los coagulantes naturales que prometen mitigar el cambio climático actual. Por último, se discuten las ventajas, los inconvenientes y los posibles estudios futuros. Se observó que DAF tiene un potencial considerable para el tratamiento de aguas residuales, así como para la utilización de residuos. La generación de grandes cantidades de lodos de DAF es una brecha para la producción de energía limpia, pues permite utilizar estos residuos para la producción de biogás.      es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2111
dc.identifier10.22430/22565337.2111
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7800
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2111/2213
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2111/2232
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2111/2233
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2111/2262
dc.relation/*ref*/UNESCO, The United Nations World Water Development Report 2019. Leaving no one behind. UNESCO. Digital Library. 2019. https://unesdoc.unesco.org/ark:/48223/pf0000367304
dc.relation/*ref*/Agua.org.mx, Agua en el planeta. Fondo Para La Comunicación y La Educación Ambiental, A.C. 2017. https://agua.org.mx/en-el-planeta/
dc.relation/*ref*/H. Ritchie; M. Roser, Water Use and Stress. Our World in Data. 2017. https://ourworldindata.org/water-use-stress
dc.relation/*ref*/SWAGL. Water in Agriculture : Towards Sustainable Agriculture. Washington, D.C. : World Bank Group. 2021. https://documents1.worldbank.org/curated/en/875921614166983369/pdf/Water-in-Agriculture-Towards-Sustainable-Agriculture.pdf
dc.relation/*ref*/A. Aziz; F. Basheer; A. Sengar; Irfanullah, S. U. Khan; I. H. Farooqi, “Biological wastewater treatment (anaerobic-aerobic) technologies for safe discharge of treated slaughterhouse and meat processing wastewater,” Sci. Total Environ., vol. 686, pp. 681-708, Oct. 2019. https://doi.org/10.1016/j.scitotenv.2019.05.295
dc.relation/*ref*/A. Mirshafiee; A. Rezaee; R. S. Mamoory, “A clean production process for edible oil removal from wastewater using an electroflotation with horizontal arrangement of mesh electrodes,” J. Clean. Prod., vol. 198, pp. 71-79, Oct. 2018. https://doi.org/10.1016/j.jclepro.2018.06.201
dc.relation/*ref*/C. J. Nawarkar; V. D. Salkar, “Solar powered Electrocoagulation system for municipal wastewater treatment,” Fuel, vol. 237, pp. 222-226, Feb. 2019. https://doi.org/10.1016/j.fuel.2018.09.140
dc.relation/*ref*/H. Wu et al., “Comprehensive evaluation on a prospective precipitation-flotation process for metal-ions removal from wastewater simulants,” J. Hazard. Mater., vol. 371, pp. 592-602, Jun. 2019. https://doi.org/10.1016/j.jhazmat.2019.03.048
dc.relation/*ref*/A. Azevedo; R. Etchepare; J. Rubio, “Raw water clarification by flotation with microbubbles and nanobubbles generated with a multiphase pump,” Water Sci. Technol., vol. 75, no. 10, pp. 2342-2349, May. 2017. https://doi.org/10.2166/wst.2017.113
dc.relation/*ref*/A. Azevedo; H. Oliveira; J. Rubio, “Bulk nanobubbles in the mineral and environmental areas: Updating research and applications,” Adv. Colloid Interface Sci., vol. 271, p. 101992, Sep. 2019. https://doi.org/10.1016/j.cis.2019.101992
dc.relation/*ref*/R. Etchepare; A. Azevedo; S. Calgaroto; J. Rubio, “Removal of ferric hydroxide by flotation with micro and nanobubbles,” Sep. Purif. Technol., vol. 184, pp. 347-353, Aug. 2017. https://doi.org/10.1016/j.seppur.2017.05.014
dc.relation/*ref*/H. A. Oliveira; A. C. Azevedo; R. Etchepare; J. Rubio, “Separation of emulsified crude oil in saline water by flotation with micro- and nanobubbles generated by a multiphase pump,” Water Sci. Technol., vol. 76, no. 10, pp. 2710-2718, Nov. 2017. https://doi.org/10.2166/wst.2017.441
dc.relation/*ref*/T. Temesgen; T. T. Bui; M. Han; T. Kim; H. Park, “Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review,” Adv. Colloid Interface Sci., vol. 246, pp. 40-51, Aug. 2017. https://doi.org/10.1016/j.cis.2017.06.011
dc.relation/*ref*/R. Etchepare; H. Oliveira; A. Azevedo; J. Rubio, “Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles,” Sep. Purif. Technol., vol. 186, pp. 326-332, Oct. 2017. https://doi.org/10.1016/j.seppur.2017.06.007
dc.relation/*ref*/M. W. Lim; E. V. Lau; P. E. Poh, “Micro-macrobubbles interactions and its application in flotation technology for the recovery of high density oil from contaminated sands,” J. Pet. Sci. Eng., vol. 161, pp. 29-37, Feb. 2018. https://doi.org/10.1016/j.petrol.2017.11.064
dc.relation/*ref*/K. Ruby; S. K. Majumder, “Studies on stability and properties of micro and nano-particle-laden ionic microbubbles,” Powder Technol., vol. 335, pp. 77-90, Jul. 2018. https://doi.org/10.1016/j.powtec.2018.04.069
dc.relation/*ref*/M. Zhang; P. Guiraud, “Surface-modified microbubbles (colloidal gas aphrons) for nanoparticle removal in a continuous bubble generation-flotation separation system,” Water Res., vol. 126, pp. 399-410, Dec. 2017. https://doi.org/10.1016/j.watres.2017.09.051
dc.relation/*ref*/S. Calgaroto; A. Azevedo; J. Rubio, “Separation of amine-insoluble species by flotation with nano and microbubbles,” Miner. Eng., vol. 89, pp. 24-29, Apr. 2016. https://doi.org/10.1016/j.mineng.2016.01.006
dc.relation/*ref*/L. Zhang, “Advanced treatment of oilfield wastewater by a combination of DAF, yeast bioreactor, UASB, and BAF processes,” Sep. Sci. Technol., vol. 56, no. 4, pp. 779-788, Mar. 2021. https://doi.org/10.1080/01496395.2019.1711411
dc.relation/*ref*/G. H. Johannesson; A. Crolla; J. D. Lauzon; B. H. Gilroyed, “Estimation of biogas co-production potential from liquid dairy manure, dissolved air flotation waste (DAF) and dry poultry manure using biochemical methane potential (BMP) assay,” Biocatal. Agric. Biotechnol., vol. 25, p. 101605, May. 2020. https://doi.org/10.1016/j.bcab.2020.101605
dc.relation/*ref*/T. Wallace; D. Gibbons; M. O’Dwyer; T. P. Curran, “International evolution of fat, oil and grease (FOG) waste management - A review,” J. Environ. Manage., vol. 187, pp. 424-435, Feb. 2017. https://doi.org/10.1016/j.jenvman.2016.11.003
dc.relation/*ref*/Q. Zhang; S. Liu; C. Yang; F. Chen; S. Lu, “Bioreactor consisting of pressurized aeration and dissolved air flotation for domestic wastewater treatment,” Sep. Purif. Technol., vol. 138, pp. 186-190, Dec. 2014. https://doi.org/10.1016/j.seppur.2014.10.024
dc.relation/*ref*/T. Azuma et al., “Removal of pharmaceuticals in water by introduction of ozonated microbubbles,” Sep. Purif. Technol., vol. 212, pp. 483-489, Apr. 2019. https://doi.org/10.1016/j.seppur.2018.11.059
dc.relation/*ref*/Y. Sun; S. Wang; J. Niu, “Microbial community evolution of black and stinking rivers during in situ remediation through micro-nano bubble and submerged resin floating bed technology,” Bioresour. Technol., vol. 258, pp. 187-194, Jun. 2018. https://doi.org/10.1016/j.biortech.2018.03.008
dc.relation/*ref*/H. Al-Zoubi; K. A. Ibrahim; K. A. Abu-Sbeih, “Removal of heavy metals from wastewater by economical polymeric collectors using dissolved air flotation process,” J. Water Process Eng., vol. 8, pp. 19-27, Dec. 2015. https://doi.org/10.1016/j.jwpe.2015.08.002
dc.relation/*ref*/Y. Wang et al., “Interactions between flocs and bubbles in the separation zone of dissolved air flotation system,” Sci. Total Environ., vol. 761, p. 143222, Mar. 2021. https://doi.org/10.1016/j.scitotenv.2020.143222
dc.relation/*ref*/Y. Wang et al., “A study on the feasibility and mechanism of enhanced co-coagulation dissolved air flotation with chitosan-modified microbubbles,” J. Water Process Eng., vol. 40, p. 101847, Apr. 2021. https://doi.org/10.1016/j.jwpe.2020.101847
dc.relation/*ref*/K. Satpathy; U. Rehman; B. Cools; L. Verdickt; G. Peleman; I. Nopens, “CFD-based process optimization of a dissolved air flotation system for drinking water production,” Water Sci. Technol., vol. 81, no. 8, pp. 1668-1681, Apr. 2020. https://doi.org/10.2166/wst.2020.028
dc.relation/*ref*/M. M. Amin; M. M. Golbini Mofrad; H. Pourzamani; S. M. Sebaradar; K. Ebrahim, “Treatment of industrial wastewater contaminated with recalcitrant metal working fluids by the photo-Fenton process as post-treatment for DAF,” J. Ind. Eng. Chem., vol. 45, pp. 412-420, Jan. 2017. https://doi.org/10.1016/j.jiec.2016.10.010
dc.relation/*ref*/C. Cagnetta et al., “High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery,” Bioresour. Technol., vol. 291, p. 121833, Nov. 2019. https://doi.org/10.1016/j.biortech.2019.121833
dc.relation/*ref*/E. Villar-Navarro; R. M. Baena-Nogueras; M. Paniw; J. A. Perales; P. A. Lara-Martín, “Removal of pharmaceuticals in urban wastewater: High rate algae pond (HRAP) based technologies as an alternative to activated sludge based processes,” Water Res., vol. 139, pp. 19-29, Aug. 2018. https://doi.org/10.1016/j.watres.2018.03.072
dc.relation/*ref*/R. R. Fonseca; J. P. Thompson Jr.; I. C. Franco; F. V. da Silva, “Automation and Control of a Dissolved Air Flotation Pilot Plant,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 3911-3916, Jul. 2017.https://doi.org/10.1016/j.ifacol.2017.08.364
dc.relation/*ref*/Y. Matsui; K. Fukushi; N. Tambo, “Modeling, simulation and operational parameters of dissolved air flotation,” J. Water Supply Res. Technol., vol. 47, no. 1, pp. 9-20, Feb. 1998. https://doi.org/10.2166/aqua.1998.0003
dc.relation/*ref*/Z. Tian; C. Wang; M. Ji, “Full-scale dissolved air flotation (DAF) equipment for emergency treatment of eutrophic water,” Water Sci. Technol., vol. 77, no. 7, pp. 1802-1809, Apr. 2018. https://doi.org/10.2166/wst.2018.046
dc.relation/*ref*/J. P. Bogacki; P. Marcinowski; J. Naumczyk; P. Wiliński, “Cosmetic wastewater treatment using dissolved air flotation,” Arch. Environ. Prot., vol. 43, no. 2, pp. 65-73, Jun. 2017.https://doi.org/10.1515/aep-2017-0018
dc.relation/*ref*/S. Ahmadi; F. Mostafapour, “Survey of Efficiency of Dissolved Air Flotation in Removal Penicillin G Potassium from Aqueous Solutions,” Br. J. Pharm. Res., vol. 15, no. 3, pp. 1-11, Jan. 2017. https://doi.org/10.9734/BJPR/2017/31180
dc.relation/*ref*/J. E. Forero; J. Diaz; V. R. Blandón, “Diseño de un nuevo sistema de flotación para el tratamiento de aguas industriales”. C.T.F Cienc. Tecnol. Futuro, vol. 1, no. 5, pp. 67-75, Dic. 1999. http://www.scielo.org.co/pdf/ctyf/v1n5/v1n5a06.pdf
dc.relation/*ref*/J. E. Forero; O. P. Ortiz; J. J. Duque, “Design and application of flotation systems for the treatment of reinjected water in a colombian petroleum field”, C.T.F Cienc. Tecnol. Futuro, vol. 3, no. 3, pp. 147-158, Jan. 2007. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832007000100010&nrm=iso
dc.relation/*ref*/M.-S. Maeng; H.-S. Kim; K.-S. Lee; S. Dockko, “Effect of DAF configuration on the removal of phosphorus and organic matter by a pilot plant treating combined sewer overflows,” Int. Biodeterior. Biodegradation, vol. 124, pp. 17-25, Oct. 2017. https://doi.org/10.1016/j.ibiod.2017.07.017
dc.relation/*ref*/F. A. Soares et al., “Dissolved air flotation as potential new mechanism for intestinal parasite diagnosis in feces,” Acta Trop., vol. 224, p. 106137, Dec. 2021. https://doi.org/10.1016/j.actatropica.2021.106137
dc.relation/*ref*/K. Petersen; S. Vakkalanka; L. Kuzniarz, “Guidelines for conducting systematic mapping studies in software engineering: An update,” Inf. Softw. Technol., vol. 64, pp. 1-18, Aug. 2015. https://doi.org/10.1016/j.infsof.2015.03.007
dc.relation/*ref*/A. Rahman; R. Mahdavi-Hezaveh; L. Williams, “A systematic mapping study of infrastructure as code research,” Inf. Softw. Technol., vol. 108, pp. 65-77, Apr. 2019. https://doi.org/10.1016/j.infsof.2018.12.004
dc.relation/*ref*/J. K. Edzwald, “Dissolved air flotation and me,” Water Res., vol. 44, no. 7, pp. 2077-2106, Apr. 2010. https://doi.org/10.1016/j.watres.2009.12.040
dc.relation/*ref*/M. Ansari; H. H. Bokhari; D. E. Turney, “Energy efficiency and performance of bubble generating systems,” Chem. Eng. Process. - Process Intensif., vol. 125, pp. 44-55, Mar. 2018. https://doi.org/10.1016/j.cep.2017.12.019
dc.relation/*ref*/A. Azevedo; H. A. Oliveira; J. Rubio, “Treatment and water reuse of lead-zinc sulphide ore mill wastewaters by high rate dissolved air flotation,” Miner. Eng., vol. 127, pp. 114-121, Oct. 2018. https://doi.org/10.1016/j.mineng.2018.07.011
dc.relation/*ref*/H. B. Ortiz-Oliveros; R. M. Flores-Espinosa, “Design of a mobile dissolved air flotation system with high rate for the treatment of liquid radioactive waste,” Process Saf. Environ. Prot., vol. 144, pp. 23-31, Dec. 2020. https://doi.org/10.1016/j.psep.2020.07.016
dc.relation/*ref*/O. V. Okoro; Z. Sun; J. Birch, “Meat processing dissolved air flotation sludge as a potential biodiesel feedstock in New Zealand: A predictive analysis of the biodiesel product properties,” J. Clean. Prod., vol. 168, pp. 1436-1447, Dec. 2017. https://doi.org/10.1016/j.jclepro.2017.09.128
dc.relation/*ref*/V. R. Fanaie; M. Khiadani; T. Ayres, “Effects of internal geometry on hydrodynamics of dissolved air flotation (DAF) tank: An experimental study using particle image velocimetry (PIV),” Colloids Surfaces A Physicochem. Eng. Asp., vol. 575, pp. 382-390, Aug. 2019. https://doi.org/10.1016/j.colsurfa.2019.05.027
dc.relation/*ref*/R. Prakash; S. K. Majumder; A. Singh, “Flotation technique: Its mechanisms and design parameters,” Chem. Eng. Process. - Process Intensif., vol. 127, pp. 249-270, May 2018.
dc.relation/*ref*/V. R. Fanaie; M. Khiadani, “Effect of salinity on air dissolution, size distribution of microbubbles, and hydrodynamics of a dissolved air flotation (DAF) system,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 591, p. 124547, Apr. 2020. https://doi.org/10.1016/j.colsurfa.2020.124547
dc.relation/*ref*/M. de Langlard; H. Al-Saddik; S. Charton; J. Debayle; F. Lamadie, “An efficiency improved recognition algorithm for highly overlapping ellipses: Application to dense bubbly flows,” Pattern Recognit. Lett., vol. 101, pp. 88-95, Jan. 2018.https://doi.org/10.1016/j.patrec.2017.11.024
dc.relation/*ref*/A. Gordiychuk; M. Svanera, S. Benini; P. Poesio, “Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator,” Exp. Therm. Fluid Sci., vol. 70, pp. 51-60, Jan. 2016. https://doi.org/10.1016/j.expthermflusci.2015.08.014
dc.relation/*ref*/R. Prakash; S. Kumar Majumder; A. Singh, “Bubble size distribution and specific bubble interfacial area in two-phase microstructured dense bubbling bed,” Chem. Eng. Res. Des., vol. 156, pp. 108-130, Apr. 2020. https://doi.org/10.1016/j.cherd.2020.01.032
dc.relation/*ref*/S. J. Gulden; C. Riedele; S. Rollié; M.-H. Kopf; H. Nirschl, “Online bubble size analysis in micro flotation,” Chem. Eng. Sci., vol. 185, pp. 168-181, Aug. 2018. https://doi.org/10.1016/j.ces.2018.04.009
dc.relation/*ref*/L. Vinnett; J. Sovechles; C. O. Gomez; K. E. Waters, “An image analysis approach to determine average bubble sizes using one-dimensional Fourier analysis,” Miner. Eng., vol. 126, pp. 160-166, Sep. 2018. https://doi.org/10.1016/j.mineng.2018.06.030
dc.relation/*ref*/B. Swart et al., “In situ characterisation of size distribution and rise velocity of microbubbles by high-speed photography,” Chem. Eng. Sci., vol. 225, p. 115836, Nov. 2020. https://doi.org/10.1016/j.ces.2020.115836
dc.relation/*ref*/M. dos S. Pereira; A. C. Borges; F. F. Heleno; L. F. A. Squillace; L. R. D. Faroni, “Treatment of synthetic milk industry wastewater using batch dissolved air flotation,” J. Clean. Prod., vol. 189, pp. 729-737, Jul. 2018. https://doi.org/10.1016/j.jclepro.2018.04.065
dc.relation/*ref*/L. de S. Leite; M. T. Hoffmann; L. A. Daniel, “Coagulation and dissolved air flotation as a harvesting method for microalgae cultivated in wastewater,” J. Water Process Eng., vol. 32, p. 100947, Dec. 2019. https://doi.org/10.1016/j.jwpe.2019.100947
dc.relation/*ref*/A. Castillo; P. Vall; M. Garrido-Baserba; J. Comas; M. Poch, “Selection of industrial (food, drink and milk sector) wastewater treatment technologies: A multi-criteria assessment,” J. Clean. Prod., vol. 143, pp. 180-190, Feb. 2017.https://doi.org/10.1016/j.jclepro.2016.12.132
dc.relation/*ref*/B. R. Baker; R. Mohamed; A. Al-Gheethi; H. A. Aziz, “Advanced technologies for poultry slaughterhouse wastewater treatment: A systematic review,” J. Dispers. Sci. Technol., vol. 42, no. 6, pp. 880-899, May. 2021. https://doi.org/10.1080/01932691.2020.1721007
dc.relation/*ref*/V. Del Nery; M. H. Z. Damianovic; R. B. Moura; E. Pozzi; E. C. Pires; E. Foresti, “Poultry slaughterhouse wastewater treatment plant for high quality effluent,” Water Sci. Technol., vol. 73, no. 2, pp. 309-316, Jan. 2016. https://doi.org/10.2166/wst.2015.494
dc.relation/*ref*/M. do S. Pereira; A. C. Borges; G. L. Muniz; F. F. Heleno; L. R. D. Faroni, “Dissolved air flotation optimization for treatment of dairy effluents with organic coagulants,” J. Water Process Eng., vol. 36, p. 101270, Aug. 2020. https://doi.org/10.1016/j.jwpe.2020.101270
dc.relation/*ref*/G. L. Muniz; A. C. Borges; T. C. F. da Silva, “Performance of natural coagulants obtained from agro-industrial wastes in dairy wastewater treatment using dissolved air flotation,” J. Water Process Eng., vol. 37, p. 101453, Oct. 2020. https://doi.org/10.1016/j.jwpe.2020.101453
dc.relation/*ref*/S. Ansari; J. Alavi; Z. M. Yaseen, “Performance of full-scale coagulation-flocculation/DAF as a pre-treatment technology for biodegradability enhancement of high strength wastepaper-recycling wastewater,” Environ. Sci. Pollut. Res., vol. 25, no. 34, pp. 33978-33991, Dec. 2018. https://doi.org/10.1007/s11356-018-3340-0
dc.relation/*ref*/M. M. G. Mofrad; H. Pourzamani; M. M. Amin; I. Parseh; M. Alipour, “In situ treatment of metalworking wastewater by chemical addition-dissolved air flotation coupled with UV, H2O2 & ZnO,” Heliyon, vol. 6, no. 1, p. e03091, Jan. 2020. https://doi.org/10.1016/j.heliyon.2019.e03091
dc.relation/*ref*/Y. Shutova; B. L. Karna, A. C. Hambly, B. Lau, R. K. Henderson; P. Le-Clech, “Enhancing organic matter removal in desalination pretreatment systems by application of dissolved air flotation,” Desalination, vol. 383, pp. 12-21, Apr. 2016. https://doi.org/10.1016/j.desal.2015.12.018
dc.relation/*ref*/M. R. Aliff Radzuan; M. A. Abia-Biteo Belope; R. B. Thorpe, “Removal of fine oil droplets from oil-in-water mixtures by dissolved air flotation,” Chem. Eng. Res. Des., vol. 115, pp. 19-33, Nov. 2016. https://doi.org/10.1016/j.cherd.2016.09.013
dc.relation/*ref*/M. Karhu; T. Leiviskä; J. Tanskanen, “Enhanced DAF in breaking up oil-in-water emulsions,” Sep. Purif. Technol., vol. 122, pp. 231-241, Feb. 2014.https://doi.org/10.1016/j.seppur.2013.11.007
dc.relation/*ref*/F. C. P. Rocha e Silva et al., “Oil removal efficiency forecast of a Dissolved Air Flotation (DAF) reduced scale prototype using the dimensionless number of Damköhler,” J. Water Process Eng., vol. 23, pp. 45-49, Jun. 2018. https://doi.org/10.1016/j.jwpe.2018.01.019
dc.relation/*ref*/C. Rattanapan; A. Sawain; T. Suksaroj; C. Suksaroj, “Enhanced efficiency of dissolved air flotation for biodiesel wastewater treatment by acidification and coagulation processes,” Desalination, vol. 280, no. 1-3, pp. 370-377, Oct. 2011. https://doi.org/10.1016/j.desal.2011.07.018
dc.relation/*ref*/J. Lee et al., “Refractory oil wastewater treatment by dissolved air flotation, electrochemical advanced oxidation process, and magnetic biochar integrated system,” J. Water Process Eng., vol. 36, p. 101358, Aug. 2020. https://doi.org/10.1016/j.jwpe.2020.101358
dc.relation/*ref*/R. T. Rodrigues; J. Rubio, “DAF-dissolved air flotation: Potential applications in the mining and mineral processing industry,” Int. J. Miner. Process., vol. 82, no. 1, pp. 1-13, Feb. 2007. https://doi.org/10.1016/j.minpro.2006.07.019
dc.relation/*ref*/J. Amaral Filho; A. Azevedo; R. Etchepare; J. Rubio, “Removal of sulfate ions by dissolved air flotation (DAF) following precipitation and flocculation,” Int. J. Miner. Process., vol. 149, pp. 1-8, Apr. 2016. https://doi.org/10.1016/j.minpro.2016.01.012
dc.relation/*ref*/J. Xue; H. Zhong; S. Wang, “Removal of sodium oleate from synthetic manganese leaching solution by coagulation-dissolved air flotation,” J. Environ. Manage., vol. 247, pp. 1-8, Oct. 2019.https://doi.org/10.1016/j.jenvman.2019.06.026
dc.relation/*ref*/X. Zhang; X. Zhang; Y. Liu; Q. Zhang; S. Yang; X. He, “Removal of viscous and clogging suspended solids in the wastewater from acrylonitrile-butadiene-styrene resin production by a new dissolved air release device,” Process Saf. Environ. Prot., vol. 148, pp. 524-535, Apr. 2021. https://doi.org/10.1016/j.psep.2020.10.031
dc.relation/*ref*/H. A. Oliveira; A. Azevedo; J. Rubio, “Removal of flocculated TiO 2 nanoparticles by settling or dissolved air flotation,” Environ. Technol., vol. 42, no. 7, pp. 1001-1012, Mar. 2021.https://doi.org/10.1080/09593330.2019.1650123
dc.relation/*ref*/H. B. Ortiz-Oliveros; R. M. Flores-Espinosa, “Simultaneous removal of oil, total Co and 60Co from radioactive liquid waste by dissolved air flotation,” Int. J. Environ. Sci. Technol., vol. 16, no. 7, pp. 3679-3686, Jul. 2019. https://doi.org/10.1007/s13762-018-1984-4
dc.relation/*ref*/S. Watanabe et al., “STRAD project for systematic treatments of radioactive liquid wastes generated in nuclear facilities,” Prog. Nucl. Energy, vol. 117, p. 103090, Nov. 2019. https://doi.org/10.1016/j.pnucene.2019.103090
dc.relation/*ref*/N. R. Hanumanth Rao et al., “The role of algal organic matter in the separation of algae and cyanobacteria using the novel ‘Posi’ - Dissolved air flotation process,” Water Res., vol. 130, pp. 20-30, Mar. 2018. https://doi.org/10.1016/j.watres.2017.11.049
dc.relation/*ref*/A. H. Alshahri; L. Fortunato; N. Zaouri; N. Ghaffour; T. Leiknes, “Role of dissolved air flotation (DAF) and liquid ferrate on mitigation of algal organic matter (AOM) during algal bloom events in RO desalination,” Sep. Purif. Technol., vol. 256, p. 117795, Feb. 2021. https://doi.org/10.1016/j.seppur.2020.117795
dc.relation/*ref*/H.-B. Ding; M. Doyle; A. Erdogan; R. Wikramanayake; P. Gallagher, “Innovative use of dissolved air flotation with biosorption as primary treatment to approach energy neutrality in WWTPs,” Water Pract. Technol., vol. 10, no. 1, pp. 133-142, Mar. 2015. https://doi.org/10.2166/wpt.2015.015
dc.relation/*ref*/G. L. de Oliveira; L. A. Daniel, “Removal of Giardia spp. cysts and Cryptosporididum spp. oocysts from anaerobic effluent by dissolved air flotation,” Environ. Technol., vol. 42, no. 1, pp. 141-147, Jan. 2021. https://doi.org/10.1080/09593330.2019.1625447
dc.relation/*ref*/O. Sanchez et al., “Recovery of particulate matter from a high-rate moving bed biofilm reactor by high-rate dissolved air flotation,” Water Qual. Res. J., vol. 53, no. 4, pp. 181-190, Nov. 2018 https://doi.org/10.2166/wqrj.2018.003
dc.relation/*ref*/S. Choi; J. Shin; K.-J. Chae; Y. M. Kim, “Mitigation via physiochemically enhanced primary treatment of antibiotic resistance genes in influent from a municipal wastewater treatment plant,” Sep. Purif. Technol., vol. 247, p. 116946, Sep. 2020. https://doi.org/10.1016/j.seppur.2020.116946
dc.relation/*ref*/T. Zheng et al., “Separation of Pollutants from Oil-Containing Restaurant Wastewater by Novel Microbubble Air Flotation and Traditional Dissolved Air Flotation,” Sep. Sci. Technol., p. 150707113117003, Jul. 2015. https://doi.org/10.1080/01496395.2015.1062396
dc.relation/*ref*/F. C. Andreoli; L. P. Sabogal-Paz, “Coagulation, flocculation, dissolved air flotation and filtration in the removal of Giardia spp. and Cryptosporidium spp. from water supply,” Environ. Technol., vol. 40, no. 5, pp. 654-663, Feb. 2019. http://dx.doi.org/10.1080/09593330.2017.1400113
dc.relation/*ref*/D. Kotoula et al., “Municipal wastewater treatment by combining in series microalgae Chlorella sorokiniana and macrophyte Lemna minor: Preliminary results,” J. Clean. Prod., vol. 271, p. 122704, Oct. 2020. https://doi.org/10.1016/j.jclepro.2020.122704
dc.relation/*ref*/I. A. Crossley; M. T. Valade, “A review of the technological developments of dissolved air flotation,” J. Water Supply Res. Technol., vol. 55, no. 7-8, pp. 479-491, Nov. 2006. https://doi.org/10.2166/aqua.2006.057
dc.relation/*ref*/M. Lichti; H.-J. Bart, “Bubble size distributions with a shadowgraphic optical probe,” Flow Meas. Instrum., vol. 60, pp. 164-170, Apr. 2018. https://doi.org/10.1016/j.flowmeasinst.2018.02.020
dc.relation/*ref*/W. E. Juwana; A. Widyatama; O. Dinaryanto; W. Budhijanto; Indarto, and Deendarlianto, “Hydrodynamic characteristics of the microbubble dissolution in liquid using orifice type microbubble generator,” Chem. Eng. Res. Des., vol. 141, pp. 436-448, Jan. 2019. https://doi.org/10.1016/j.cherd.2018.11.017
dc.relation/*ref*/X. Wang et al., “Bubble breakup in a swirl-venturi microbubble generator,” Chem. Eng. J., vol. 403, p. 126397, Jan. 2021.https://doi.org/10.1016/j.cej.2020.126397
dc.relation/*ref*/R. Mazahernasab; R. Ahmadi, “Determination of bubble size distribution in a laboratory mechanical flotation cell by a laser diffraction technique,” Physicochem. Probl. Miner. Process, vol. 52, no. 2, pp. 690-702, Jul. 2014. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832007000100010&nrm=iso
dc.relation/*ref*/N. Suwartha; D. Syamzida; C. R. Priadi; S. S. Moersidik; F. Ali, “Effect of size variation on microbubble mass transfer coefficient in flotation and aeration processes,” Heliyon, vol. 6, no. 4, p. e03748, Apr. 2020. https://doi.org/10.1016/j.heliyon.2020.e03748
dc.relation/*ref*/X. Tao; Y. Liu; H. Jiang; R. Chen, “Microbubble generation with shear flow on large-area membrane for fine particle flotation,” Chem. Eng. Process. - Process Intensif., vol. 145, p. 107671, Nov. 2019. https://doi.org/10.1016/j.cep.2019.107671
dc.relation/*ref*/A. Kouhestani; A. Amani Tehrani; H. Parsaeian; M. H. Nikfa; A. Bazargan; H. Masoumi Isfahani, “Study of 3D-Printed Pressure Release Nozzle for Microbubble Formation in Full-Scale Dissolved Air Flotation (DAF),” Chem. Eng. Process. - Process Intensif., vol. 155, p. 108070, Sep. 2020. https://doi.org/10.1016/j.cep.2020.108070
dc.relation/*ref*/W. Chung; S. Young, “Evaluation of a chemical dissolved air flotation system for the treatment of restaurant dishwasher effluent,” Can. J. Civ. Eng., vol. 40, no. 12, pp. 1164-1172, Dec. 2013. https://doi.org/10.1139/cjce-2012-0357
dc.relation/*ref*/A. Chen; Z. Wang; J. Yang, “Influence of bubble size on the fluid dynamic behavior of a DAF tank: A 3D numerical investigation,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 495, pp. 200-207, Apr. 2016. https://doi.org/10.1016/j.colsurfa.2015.10.039
dc.relation/*ref*/T. Kim; H. Park; M. Han, “Design parameter estimations for adjustable bubble size in bubble generating system,” Water Sci. Technol., vol. 77, no. 1, pp. 1-6, Jan. 2018. https://doi.org/10.2166/wst.2017.470
dc.relation/*ref*/J. P. Rodrigues; R. Béttega, “Evaluation of multiphase CFD models for Dissolved Air Flotation (DAF) process,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 539, pp. 116-123, Feb. 2018. https://doi.org/10.1016/j.colsurfa.2017.12.015
dc.relation/*ref*/J. Huang et al., “An investigation on the performance of a micro-scale Venturi bubble generator,” Chem. Eng. J., vol. 386, p. 120980, Apr. 2020. . https://doi.org/10.1016/j.cej.2019.02.068
dc.relation/*ref*/Z. Pourkarimi; B. Rezai; M. Noaparast, “Effective parameters on generation of nanobubbles by cavitation method for froth flotation applications,” Physicochem. Probl. Miner. Process, vol. 53, no. 2, pp. 920-942. Aug. 2016. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832007000100010&nrm=iso
dc.relation/*ref*/Y. Rybachuk; A. Jodłowski, “Mathematical model of dissolved air flotation (DAF) based on impulse conservation law,” SN Appl. Sci., vol. 1, no. 6, p. 541, Jun. 2019. https://doi.org/10.1007/s42452-019-0560-y
dc.relation/*ref*/B. Lakghomi; Y. Lawryshyn; R. Hofmann, “A model of particle removal in a dissolved air flotation tank: Importance of stratified flow and bubble size,” Water Res., vol. 68, pp. 262-272, Jan. 2015. https://doi.org/10.1016/j.watres.2014.09.053
dc.relation/*ref*/J. Yanza-López; R. Rivera-Hernández; L. Gómez-Torres; C. Zafra-Mejía, “Evaluación de FeCl3 y PAC para la potabilización de agua con alto contenido de color y baja turbiedad,” TecnoLógicas, vol. 22, no. 45, pp. 9-21, May 2019. https://doi.org/10.22430/22565337.1085
dc.relation/*ref*/K. Xu; Y. Li; X. Zou; H. Wen; Z. Shen; X. Ren, “Investigating microalgae cell-microsphere interactions during microalgae harvesting by ballasted dissolved air flotation through XDLVO theory,” Biochem. Eng. J., vol. 137, pp. 294-304, Sep. 2018. https://doi.org/10.1016/j.bej.2018.06.013
dc.relation/*ref*/J. Fernández; S. Montenegro; C. Ledezma; J. Yanza, “Sedimentabilidad de partículas floculentas en aguas con alto contenido de color y baja turbiedad, coaguladas con FeCl3 + PAC versus PAC,” TecnoLógicas, vol. 24, no. 51, p. e1789, Feb. 2021. https://doi.org/10.22430/22565337.1789
dc.relation/*ref*/R. Miranda; I. Latour; A. Blanco, “Understanding the Efficiency of Aluminum Coagulants Used in Dissolved Air Flotation (DAF),” Front. Chem., vol. 8, Feb. 2020. https://doi.org/10.3389/fchem.2020.00027
dc.relation/*ref*/F. Ghasemi Naghdi; P. M. Schenk, “Dissolved air flotation and centrifugation as methods for oil recovery from ruptured microalgal cells,” Bioresour. Technol., vol. 218, pp. 428-435, Oct. 2016. https://doi.org/10.1016/j.biortech.2016.06.093
dc.relation/*ref*/H. S. Oh, S. H. Kang, S. Nam, E.-J. Kim; T.-M. Hwang, “CFD modelling of cyclonic-DAF (dissolved air flotation) reactor for algae removal,” Eng. Sci. Technol. an Int. J., vol. 22, no. 2, pp. 477-481, Apr. 2019. https://doi.org/10.1016/j.jestch.2018.12.003
dc.relation/*ref*/K. H. Lee; H. Kim, J. W. KuK, J. D. Chung, S. Park; E. E. Kwon, “Micro-bubble flow simulation of dissolved air flotation process for water treatment using computational fluid dynamics technique,” Environ. Pollut., vol. 256, p. 112050, Jan. 2020. https://doi.org/10.1016/j.envpol.2019.01.011
dc.relation/*ref*/J. P. Rodrigues; J. N. M. Batista; R. Béttega, “Application of population balance equations and interaction models in CFD simulation of the bubble distribution in dissolved air flotation,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 577, pp. 723-732, Sep. 2019. https://doi.org/10.1016/j.colsurfa.2019.06.032
dc.relation/*ref*/Y. Wang; W. Liu; L. Tian; R. Jia; Z. Du; A. Zhou, “Research on the CFD numerical simulation and process optimization of countercurrent-cocurrent dissolved air flotation,” J. Water Supply Res. Technol., vol. 68, no. 5, pp. 325-336, Aug. 2019. https://doi.org/10.2166/aqua.2019.147
dc.relation/*ref*/A. Atamaleki et al., “Effect of coagulation and sonication on the dissolved air flotation (DAF) process for thickening of biological sludge in wastewater treatment,” Environ. Heal. Eng. Manag., vol. 7, no. 1, pp. 59-65, Feb. 2020. https://doi.org/10.34172/EHEM.2020.08
dc.relation/*ref*/R. R. Fonseca; I. C. Franco, J. P. Thompson; F. V. da Silva, “Turbidity control on dissolved air flotation process using fuzzy logic,” Water Sci. Technol., vol. 78, no. 12, pp. 2586-2596, Dec. 2018. https://doi.org/10.2166/wst.2019.015
dc.relation/*ref*/X. Zhang; L. Wang; M. Sommerfeld; Q. Hu, “Harvesting microalgal biomass using magnesium coagulation-dissolved air flotation,” Biomass and Bioenergy, vol. 93, pp. 43-49, Oct. 2016. https://doi.org/10.1016/j.biombioe.2016.06.024
dc.relation/*ref*/M. A. S. Alkarawi,G. S. Caldwell; J. G. M. Lee, “Continuous harvesting of microalgae biomass using foam flotation,” Algal Res., vol. 36, pp. 125-138, Dec. 2018. https://doi.org/10.1016/j.algal.2018.10.018
dc.rightsDerechos de autor 2021 TecnoLógicases-ES
dc.sourceTecnoLógicas; Vol. 24 No. 52 (2021); e2111en-US
dc.sourceTecnoLógicas; Vol. 24 Núm. 52 (2021); e2111es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectDissolved air flotationen-US
dc.subjectMicrobubblesen-US
dc.subjectWastewater treatmenten-US
dc.subjectDesign and operating parametersen-US
dc.subjectcoagulation-flocculationen-US
dc.subjectFlotación por aire disueltoes-ES
dc.subjectmicroburbujases-ES
dc.subjecttratamiento de aguas residualeses-ES
dc.subjectparámetros de diseño y operaciónes-ES
dc.subjectcoagulación-floculaciónes-ES
dc.titleDissolved Air Flotation: A Review from the Perspective of System Parameters and Uses in Wastewater Treatmenten-US
dc.titleFlotación por aire disuelto: una revisión desde la perspectiva de los parámetros del sistema y usos en el tratamiento de aguas residualeses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
revistatecnologicas_2111-MPUB-VF.pdf
Tamaño:
1.2 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
ojsitm_344268257014.epub
Tamaño:
1.13 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
ojsitm_344268257014.xml
Tamaño:
244.84 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2262.html
Tamaño:
255.32 KB
Formato:
Hypertext Markup Language