Probabilistic and Harmonic Assessment of Power Quality Parameters from Distributed Energy Resources in a Distribution Network

dc.creatorCaballero-Peña, Juan
dc.creatorOsma-Pinto, German
dc.date2024-01-30
dc.date.accessioned2025-10-01T23:53:09Z
dc.descriptionDistributed energy resources (DERs) are leading actors in energy transition worldwide. Despite the environmental benefits, DERs are intermittent (consumption/generation power changes according to the input variables), and the use of power electronic devices affects the power quality in distribution networks. Typically, models and simulations (deterministic or probabilistic) are proposed to estimate such impacts. However, previous studies have analyzed the main effects caused by one or two DERs during a day. These studies had a reduced level of detail in the applied methodology in modeling and impact evaluation, or they did not consider that the harmonic distortion level depends on input variables. The aim of this article was to develop a probabilistic harmonic simulation approach to characterize the hourly effect of photovoltaic systems (PVS), battery energy storage systems, and electric vehicle charging stations in a 34-node IEEE test feeder. The individual and collective effect estimation of the DERs consists of the hourly quantification of the effective voltage value, voltage unbalance, power factor, and harmonic distortion, with data obtained using Python and PowerFactory co-simulation for 23 operation scenarios. These impacts were assessed through indicators proposed in the literature and hypothesis tests (inferential statistics). Each DER generally operates at a specific time, making it easy to identify the individual effects of network parameters. The PVS increased the effective voltage value and total harmonic distortion. However, electric vehicles and batteries increase the voltage unbalance and power factor due to the two-phase connection in some network nodes.en-US
dc.descriptionLos recursos energéticos distribuidos (RED) son actores líderes en la transición energética en todo el mundo. A pesar de los beneficios ambientales, los RED son intermitentes (la energía de consumo/generación cambia según las variables de entrada), y el uso de dispositivos de electrónica de potencia afecta la calidad de la energía en las redes de distribución. Por lo general, se proponen modelos y simulaciones (deterministas o probabilísticas) para estimar dichos impactos. Sin embargo, estudios previos han analizado los principales efectos causados por uno o dos RED durante un día, con un nivel de detalle reducido en la metodología aplicada en el modelado y evaluación de impacto, o sin considerar que el nivel de distorsión armónica depende de las variables de entrada. El objetivo del presente artículo fue desarrollar un enfoque de simulación armónica probabilística para caracterizar el efecto horario de los sistemas fotovoltaicos (SFV), los sistemas de almacenamiento de energía de baterías y las estaciones de carga de vehículos eléctricos en un alimentador de prueba IEEE de 34 nodos. La estimación del efecto individual y colectivo del RED consistió en la cuantificación horaria del valor efectivo de tensión, desequilibrio de tensión, factor de potencia y distorsión armónica, con datos obtenidos mediante co-simulación Python y PowerFactory para 23 escenarios de operación. Estos impactos fueron evaluados a través de indicadores propuestos en la literatura y pruebas de hipótesis (estadística inferencial). Cada RED generalmente opera en un momento específico, lo que facilita la identificación de los efectos individuales de los parámetros de la red. El SFV aumentó el valor de voltaje efectivo y la distorsión armónica total. Sin embargo, los vehículos eléctricos y las baterías aumentan el desequilibrio de tensión y el factor de potencia debido a la conexión bifásica en algunos nodos de la red.es-ES
dc.formatapplication/pdf
dc.formatimage/jpeg
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2684
dc.identifier10.22430/22565337.2684
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7874
dc.languageeng
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2684/3062
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2684/3219
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2684/3245
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2684/3246
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2684/3280
dc.relation/*ref*/N. T. Mbungu, R. M. Naidoo, R. C. Bansal, M. W. Siti, and D. H. Tungadio, “An overview of renewable energy resources and grid integration for commercial building applications,” J. Energy Storage, vol. 29, p. 101385, Jun. 2020. https://doi.org/10.1016/j.est.2020.101385
dc.relation/*ref*/P. Sharma, H. D. Mathur, P. Mishra, and R. C. Bansal, “A critical and comparative review of energy management strategies for microgrids,” Appl. Energy, vol. 327, p. 120028, Dec. 2022. https://doi.org/10.1016/j.apenergy.2022.120028
dc.relation/*ref*/Y. Liu, and L. Wu, “Integrating Distributed Energy Resources into the Independent System Operators’ Energy Market: A Review,” Current Sustainable/Renewable Energy Reports, vol. 8, pp. 233–241, Aug. 2021. https://doi.org/10.1007/s40518-021-00190-8
dc.relation/*ref*/M. Kumar, “Social, Economic, and Environmental Impacts of Renewable Energy Resources,” in Wind Solar Hybrid Renwable Energy System, London, UK: IntechOpen, 2020, pp. 227–235. https://doi.org/10.5772/intechopen.89494
dc.relation/*ref*/J. Caballero-Peña, C. Cadena-Zarate, A. Parrado-Duque, and G. Osma-Pinto, “Distributed energy resources on distribution networks: A systematic review of modelling, simulation, metrics, and impacts,” International Journal of Electrical Power and Energy Systems, vol. 138, p. 107900, Jun. 2022. https://doi.org/10.1016/j.ijepes.2021.107900
dc.relation/*ref*/A. J. Veldhuis, M. Leach, and A. Yang, “The impact of increased decentralised generation on the reliability of an existing electricity network,” Appl. Energy, vol. 215, pp. 479–502, Apr. 2018. https://doi.org/10.1016/j.apenergy.2018.02.009
dc.relation/*ref*/T. Senjyu, and A. M. Howlader, “Operational aspects of distribution systems with massive DER penetrations,” in Integration of Distributed Energy Resources in Power Systems, Elsevier, 2016, pp. 51–76. https://doi.org/10.1016/B978-0-12-803212-1.00003-9
dc.relation/*ref*/J. H. R. Enslin, and P. J. M. Heskes, “Harmonic-interaction between a large number of distributed power inverters and the distribution network,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1586–1593, Nov. 2004. https://doi.org/10.1109/TPEL.2004.836615
dc.relation/*ref*/A. Arguello, J. D. Lara, J. D. Rojas, and G. Valverde, “Impact of Rooftop PV Integration in Distribution Systems Considering Socioeconomic Factors,” IEEE Syst. J., vol. 12, no. 4, pp. 3531–3542, Dec. 2018. https://doi.org/10.1109/JSYST.2017.2739022
dc.relation/*ref*/I. C. Barutcu, E. Karatepe, and M. Boztepe, “Impact of harmonic limits on PV penetration levels in unbalanced distribution networks considering load and irradiance uncertainty,” International Journal of Electrical Power and Energy Systems, vol. 118, p. 105780, Jun. 2020. https://doi.org/10.1016/j.ijepes.2019.105780
dc.relation/*ref*/Y. Yu et al., “Data-Driven Study of Low Voltage Distribution Grid Behaviour with Increasing Electric Vehicle Penetration,” IEEE Access, vol. 10, pp. 6053–6070, Jan. 2022. https://doi.org/10.1109/ACCESS.2021.3140162
dc.relation/*ref*/M. N. Iqbal, L. Kütt, K. Daniel, B. Asad, and P. S. Ghahfarokhi, “Estimation of harmonic emission of electric vehicles and their impact on low voltage residential network,” Sustainability, vol. 13, no. 15, p. 8551, Jul. 2021. https://doi.org/10.3390/su13158551
dc.relation/*ref*/S. Choudhury, “Review of energy storage system technologies integration to microgrid: Types, control strategies, issues, and future prospects,” Journal of Energy Storage, vol. 48, p. 103966, Apr. 2022. https://doi.org/10.1016/j.est.2022.103966
dc.relation/*ref*/M. T. Tolmasquim, P. M. A. Senra, A. R. Gouvêa, A. O. Pereira Jr, A. C. Alves, and M. Moszkowicz, “Strategies of electricity distributors in the context of distributed energy resources diffusion,” Environ Impact Assess Rev., vol. 84, p. 106429, Sep. 2020. https://doi.org/10.1016/j.eiar.2020.106429
dc.relation/*ref*/1547-2018 - IEEE Standard for Interconnection and Interoperability of Distributed Energy Resources with Associated Electric Power Systems Interfaces, IEEE, Piscataway, NJ, USA, 2018. https://doi.org/10.1109/IEEESTD.2018.8332112
dc.relation/*ref*/J. L. Moreira Pereira, A. F. Raiol Leal, G. Oliveira de Almeida, and M. E. de L. Tostes, “Harmonic effects due to the high penetration of photovoltaic generation into a distribution system,” Energies, vol. 14, no. 13, p. 4021, Jul. 2021. https://doi.org/10.3390/en14134021
dc.relation/*ref*/M. Ahmed, Nahid-Al-Masood, and S. R. Deeba, “Impact of integrating battery energy storage system on harmonic distortion in an industrial microgrid,” in 2020 International Conference on Smart Grids and Energy Systems (SGES), Perth, Australia, 2020, pp. 712–717. https://doi.org/10.1109/SGES51519.2020.00132
dc.relation/*ref*/U. H. Ramadhani, R. Fachrizal, M. Shepero, J. Munkhammar, and J. Widén, “Probabilistic load flow analysis of electric vehicle smart charging in unbalanced LV distribution systems with residential photovoltaic generation,” Sustain. Cities and Soc., vol. 72, p. 103043, Sep. 2021. https://doi.org/10.1016/j.scs.2021.103043
dc.relation/*ref*/M. Al-Saadi et al., “Impact on the Power Grid Caused via Ultra-Fast Charging Technologies of the Electric Buses Fleet,” Energies, vol. 15, no. 4, p. 1424, Feb. 2022. https://doi.org/10.3390/en15041424
dc.relation/*ref*/B. R. Prusty, and D. Jena, “A critical review on probabilistic load flow studies in uncertainty constrained power systems with photovoltaic generation and a new approach,” Renewable and Sustainable Energy Reviews, vol. 69, pp. 1286–1302, Mar. 2017. https://doi.org/10.1016/j.rser.2016.12.044
dc.relation/*ref*/A. Martínez-Peñaloza, and G. Osma-Pinto, “Analysis of the performance of the norton equivalent model of a photovoltaic system under different operating scenarios,” International Review of Electrical Engineering, vol. 16, no. 4, pp. 328–343, 2021. https://doi.org/10.15866/iree.v16i4.20278
dc.relation/*ref*/J. H. Angelim, and C. de M. Affonso, “Probabilistic assessment of voltage quality on solar-powered electric vehicle charging station,” Electric Power Systems Research, vol. 189, p. 106655, Dec. 2020. https://doi.org/10.1016/j.epsr.2020.106655
dc.relation/*ref*/L. M. Caro, G. Ramos, K. Rauma, D. F. C. Rodriguez, D. M. Martinez, and C. Rehtanz, "State of Charge Influence on the Harmonic Distortion from Electric Vehicle Charging," IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 2077-2088, May-Jun. 2021. https://doi.org/10.1109/TIA.2021.3057350
dc.relation/*ref*/F. E. Postigo Marcos et al., “A review of power distribution test feeders in the United States and the need for synthetic representative networks,” Energies, vol. 10, no. 11, p. 1896, Nov. 2017. https://doi.org/10.3390/en10111896
dc.relation/*ref*/K. P. Schneider et al., “Analytic Considerations and Design Basis for the IEEE Distribution Test Feeders,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3181–3188, May. 2018. https://doi.org/10.1109/TPWRS.2017.2760011
dc.relation/*ref*/IEEE, “IEEE PES Test Feeder.” Accessed: Oct. 09, 2023. [Online]. Available: https://cmte.ieee.org/pes-testfeeders/resources/
dc.relation/*ref*/L. F. Buitrago Arroyave, and J. M. López Lezama, “Valoración de los impactos técnicos de la generación distribuida en sistemas de energía eléctrica,” Tecnura, vol. 17, no. 36, pp. 50–60, Apr-Jun. 2013. https://www.redalyc.org/articulo.oa?id=257028093005
dc.relation/*ref*/M. Karimi, H. Mokhlis, K. Naidu, S. Uddin, and A. H. A. Bakar, “Photovoltaic penetration issues and impacts in distribution network – A review,” Renewable and Sustainable Energy Reviews, vol. 53, pp. 594–605, Jan. 2016. https://doi.org/10.1016/j.rser.2015.08.042
dc.relation/*ref*/V. Ignatova, D. Villard, and J. M. Hypolite, “Simple indicators for an effective Power Quality monitoring and analysis,” in 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC), Rome, Italy, 2015, pp. 1104-1108. https://doi.org/10.1109/EEEIC.2015.7165321
dc.relation/*ref*/I. Daut, S. Hasan, and S. Taib, “Magnetizing Current, Harmonic Content and Power Factor as the Indicators of Transformer Core Saturation,” Journal of Clean Energy Technologies, vol. 1 no. 4. pp. 304–307, Oct. 2013. https://doi.org/10.7763/jocet.2013.v1.69
dc.relation/*ref*/E. Mancini, M. Longo, W. Yaici, and D. Zaninelli, “Assessment of the Impact of Electric Vehicles on the Design and Effectiveness of Electric Distribution Grid with Distributed Generation,” Applied Sciences, vol. 10, no. 15, p.5125, Jul. 2020. https://doi.org/10.3390/app10155125
dc.relation/*ref*/G. Osma-Pinto, M. García-Rodríguez, J. Moreno-Vargas, and C. Duarte-Gualdrón, “Impact evaluation of grid-connected PV systems on PQ parameters by comparative analysis based on inferential statistics,” Energies, vol. 13, no. 7, p. 1668, Apr. 2020. https://doi.org/10.3390/en13071668
dc.relation/*ref*/
dc.rightsDerechos de autor 2024 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 27 No. 59 (2024); e2684en-US
dc.sourceTecnoLógicas; Vol. 27 Núm. 59 (2024); e2684es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectDistributed energy resourcesen-US
dc.subjectpython-PowerFactory co-simulationen-US
dc.subjectprobabilistic load flowen-US
dc.subjectharmonic distortionen-US
dc.subjectinferential statisticsen-US
dc.subjectRecursos energéticos distribuidoses-ES
dc.subjectco-simulación Python-PowerFactoryes-ES
dc.subjectflujo de carga probabilísticoes-ES
dc.subjectdistorsión armónicaes-ES
dc.subjectestadística inferenciales-ES
dc.titleProbabilistic and Harmonic Assessment of Power Quality Parameters from Distributed Energy Resources in a Distribution Networken-US
dc.titleEvaluación probabilística y armónica de parámetros de calidad de energía de recursos energéticos distribuidos en una red de distribuciónes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos