Simplified Inverter-Based Generation Model for Protection and Short-Term Stability Studies in Electromagnetic Transient Resolution
| dc.creator | Sánchez Muñoz, David | |
| dc.creator | Pérez González, Ernesto | |
| dc.creator | Piñeros, Juan Fernando | |
| dc.creator | Agudelo Zapata, Laura | |
| dc.date | 2022-11-09 | |
| dc.date.accessioned | 2025-10-01T23:52:47Z | |
| dc.description | The new dynamics of inverter-based generation (IBG) and the lack of accurate models jeopardize the safety of power systems. Additionally, most of the detailed models for electromagnetic transients (EMT) from manufacturers are black boxes. For this reason, the objective of this work was to propose a generic IBG model in EMT resolution suitable for short-circuit, protections, and short-term voltage stability studies. For this purpose, the model considered different functionalities, such as synchronization in case of unbalanced voltage sags, flexible negative sequence current injection, peak current limitation, dynamic reactive power control, and fault ride-through (FRT). This model allowed grid operators to meet the challenge of performing accurate simulations with high integration of renewable resources in their energy matrix. The model was also based on a voltage-controlled current source in the ATP/EMTP software. The short-circuit response was evaluated in a simulation scenario for different fault events presenting a reliable behavior due to the consideration of technical and regulatory requirements and constraints of IBGs. Finally, the proposed model has a fast initialization and is suitable for simulations with large time steps, making it valuable for EMT simulations in large grids. | en-US |
| dc.description | Las nuevas dinámicas de la generación basada en inversores (IBG) y la falta de modelos precisos ponen en peligro la seguridad de los sistemas de potencia. Adicionalmente, la mayoría de los modelos detallados para transitorios electromagnéticos (EMT) de los fabricantes son cajas negras. Por esta razón, el objetivo de este trabajo fue proponer un modelo de IBG genérico en resolución EMT apropiado para estudios de cortocircuito, protecciones y estabilidad de tensión de corto plazo. Para ello, el modelo consideró diferentes funcionalidades, como sincronización ante huecos de tensión desbalanceados, inyección flexible de corriente de secuencia negativa, limitación de corriente pico, control dinámico de potencia reactiva y soportabilidad ante fallas (FRT). Este modelo permitió a los operadores de red enfrentar el reto de realizar simulaciones precisas con gran integración de recursos renovables en su matriz energética. El modelo, además, se basó en una fuente de corriente controlada por tensión en el software ATP/EMTP. La respuesta de cortocircuito se evaluó en un escenario de simulación para diferentes eventos de falla presentando un comportamiento confiable debido a que se consideran los requerimientos y limitantes técnicas y regulatorias de los IBG. Finalmente, el modelo propuesto tiene una rápida inicialización y es apropiado para simulaciones con grandes pasos de tiempo, haciendo que sea valioso para simulaciones EMT en grandes redes. | es-ES |
| dc.format | application/pdf | |
| dc.format | application/zip | |
| dc.format | text/xml | |
| dc.format | text/html | |
| dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2347 | |
| dc.identifier | 10.22430/22565337.2347 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12622/7821 | |
| dc.language | eng | |
| dc.publisher | Instituto Tecnológico Metropolitano (ITM) | es-ES |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2347/2592 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2347/2604 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2347/2605 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/2347/2642 | |
| dc.relation | /*ref*/M. Fay, S. Hallegatte, A. Vogt-Schilb, J. Rozenberg, U. Narloch, and T. K. Washington, Decarbonizing Development. World Bank, 2015. https://doi.org/10.1596/21887 | |
| dc.relation | /*ref*/A. Fernández-Guillamón, E. Gómez-Lázaro, E. Muljadi, and Á. Molina-García, “Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time,” Renewable and Sustainable Energy Reviews, vol. 115, p. 109369, Nov. 2019, https://doi.org/10.1016/j.rser.2019.109369 | |
| dc.relation | /*ref*/E. Farantatos, A. Haddadi, I. Kocar, and J. Mahseredjian, “System Protection Guidelines for Systems with Inverter Based Resources,” Nov. 18, 2021. Accessed: May 16, 2022. [Online]. Available: https://www.epri.com/research/products/000000003002021390 | |
| dc.relation | /*ref*/E. Farantatos, U. Karaagac, H. Saad, and J. Mahseredjian, “Short-circuit current contribution of converter interfaced wind turbines and the impact on system protection,” in 2013 IREP Symposium Bulk Power System Dynamics and Control - IX Optimization, Security and Control of the Emerging Power Grid, Aug. 2013, pp. 1–9. https://doi.org/10.1109/IREP.2013.6629360 | |
| dc.relation | /*ref*/T. Neumann and I. Erlich, “Short Circuit Current Contribution of a Photovoltaic Power Plant,” IFAC Proceedings Volumes, vol. 45, no. 21, pp. 343–348, 2012, https://doi.org/10.3182/20120902-4-FR-2032.00061 | |
| dc.relation | /*ref*/I. Kim, “Short-Circuit Analysis Models for Unbalanced Inverter-Based Distributed Generation Sources and Loads,” IEEE Transactions on Power Systems, vol. 34, no. 5, pp. 3515–3526, Sep. 2019, https://doi.org/10.1109/TPWRS.2019.2903552 | |
| dc.relation | /*ref*/J. Jia, G. Yang, and A. H. Nielsen, “A Review on Grid-Connected Converter Control for Short-Circuit Power Provision Under Grid Unbalanced Faults,” IEEE Transactions on Power Delivery, vol. 33, no. 2, pp. 649–661, Apr. 2018, https://doi.org/10.1109/TPWRD.2017.2682164 | |
| dc.relation | /*ref*/V. Telukunta, J. Pradhan, A. Agrawal, M. Singh, and S. G. Srivani, “Protection challenges under bulk penetration of renewable energy resources in power systems: A review,” CSEE Journal of Power and Energy Systems, vol. 3, no. 4, pp. 365–379, Dec. 2017, https://doi.org/10.17775/CSEEJPES.2017.00030 | |
| dc.relation | /*ref*/A. Haddadi, I. Kocar, and E. Farantatos, “Impact of Inverter-Based Resources on Protection Schemes Based on Negative Sequence Components,” 2019. Accessed: Jul. 04, 2021. [Online]. Available: https://www.epri.com/research/products/000000003002016197 | |
| dc.relation | /*ref*/A. Haddadi, M. Zhao, I. Kocar, U. Karaagac, K. W. Chan, and E. Farantatos, “Impact of Inverter-Based Resources on Negative Sequence Quantities-Based Protection Elements,” IEEE Transactions on Power Delivery, vol. 36, no. 1, pp. 289–298, Feb. 2021, https://doi.org/10.1109/TPWRD.2020.2978075 | |
| dc.relation | /*ref*/M. Mohseni and S. M. Islam, “Review of international grid codes for wind power integration: Diversity, technology and a case for global standard,” Renewable and Sustainable Energy Reviews, vol. 16, no. 6, pp. 3876–3890, Aug. 2012, https://doi.org/10.1016/j.rser.2012.03.039 | |
| dc.relation | /*ref*/IEEE PES, “Modification of Commercial Fault Calculation Programs for Wind Turbine Generators,” 2020. Accessed: Oct. 09, 2021. [Online]. Available: https://resourcecenter.ieee-pes.org/publications/technical-reports/PES_TP_TR78_PSRC_FAULT_062320.html | |
| dc.relation | /*ref*/U. Karaagac et al., “A Generic EMT-Type Model for Wind Parks With Permanent Magnet Synchronous Generator Full Size Converter Wind Turbines,” IEEE Power and Energy Technology Systems Journal, vol. 6, no. 3, pp. 131–141, Sep. 2019, https://doi.org/10.1109/JPETS.2019.2928013 | |
| dc.relation | /*ref*/A. S. Trevisan, A. A. El-Deib, R. Gagnon, J. Mahseredjian, and M. Fecteau, “Field Validated Generic EMT-Type Model of a Full Converter Wind Turbine Based on a Gearless Externally Excited Synchronous Generator,” IEEE Transactions on Power Delivery, vol. 33, no. 5, pp. 2284–2293, Oct. 2018, https://doi.org/10.1109/TPWRD.2018.2850848 | |
| dc.relation | /*ref*/J. Qi, W. Li, P. Chao, X. Liang, Y. Sun, and Z. Li, “Generic EMT modeling method of Type-4 wind turbine generators based on detailed FRT studies,” Renew Energy, vol. 178, pp. 1129–1143, Nov. 2021, https://doi.org/10.1016/j.renene.2021.06.057 | |
| dc.relation | /*ref*/G. Lammert et al., “Modelling and dynamic performance of inverter based generation in power system studies: an international questionnaire survey,” CIRED - Open Access Proceedings Journal, vol. 2017, no. 1, pp. 1899–1902, Oct. 2017, https://doi.org/10.1049/oap-cired.2017.0898 | |
| dc.relation | /*ref*/J. Matevosyan et al., “A Future With Inverter-Based Resources: Finding Strength From Traditional Weakness,” IEEE Power and Energy Magazine, vol. 19, no. 6, pp. 18–28, Nov. 2021, https://doi.org/10.1109/MPE.2021.3104075 | |
| dc.relation | /*ref*/N. Pahalawaththa et al., “Connection of Wind Farms To Weak AC Networks,” CIGRE, 2016. Accessed: Sep. 11, 2021. [Online]. Available: https://e-cigre.org/publication/671-connection-of-wind-farms-to-weak-ac-networks | |
| dc.relation | /*ref*/S. Wang, E. Farantatos, and K. Tomsovic, “Wind turbine generator modeling considerations for stability studies of weak systems,” in 2017 North American Power Symposium (NAPS), Sep. 2017, pp. 1–6. https://doi.org/10.1109/NAPS.2017.8107399 | |
| dc.relation | /*ref*/P. Pourbeik et al., “Generic Dynamic Models for Modeling Wind Power Plants and Other Renewable Technologies in Large-Scale Power System Studies,” IEEE Transactions on Energy Conversion, vol. 32, no. 3, pp. 1108–1116, Sep. 2017, https://doi.org/10.1109/TEC.2016.2639050 | |
| dc.relation | /*ref*/A. Honrubia-Escribano, E. Gómez-Lázaro, J. Fortmann, P. Sørensen, and S. Martin-Martinez, “Generic dynamic wind turbine models for power system stability analysis: A comprehensive review,” Renewable and Sustainable Energy Reviews, vol. 81, no. June, pp. 1939–1952, Jan. 2018, https://doi.org/10.1016/j.rser.2017.06.005 | |
| dc.relation | /*ref*/K. Yamashita et al., “Modelling of Inverter- Based Generation for Power System Dynamic Studies,” 2018. Accessed: Nov. 09, 2021. [Online]. Available: https://e-cigre.org/publication/727-modelling-of-inverter-based-generation-for-power-system-dynamic-studies | |
| dc.relation | /*ref*/R. Teodorescu, M. Liserre, and P. Rodríguez, Grid Converters for Photovoltaic and Wind Power Systems. Wiley, 2011. https://doi.org/10.1002/9780470667057 | |
| dc.relation | /*ref*/J. Jia, G. Yang, A. H. Nielsen, and P. Ronne-Hansen, “Impact of VSC Control Strategies and Incorporation of Synchronous Condensers on Distance Protection Under Unbalanced Faults,” IEEE Transactions on Industrial Electronics, vol. 66, no. 2, pp. 1108–1118, Feb. 2019, https://doi.org/10.1109/TIE.2018.2835389 | |
| dc.relation | /*ref*/A. Camacho, M. Castilla, J. Miret, A. Borrell, and L. G. de Vicuna, “Active and Reactive Power Strategies With Peak Current Limitation for Distributed Generation Inverters During Unbalanced Grid Faults,” IEEE Transactions on Industrial Electronics, vol. 62, no. 3, pp. 1515–1525, Mar. 2015, https://doi.org/10.1109/TIE.2014.2347266 | |
| dc.relation | /*ref*/F. Wang, J. L. Duarte, and M. A. M. Hendrix, “Pliant Active and Reactive Power Control for Grid-Interactive Converters Under Unbalanced Voltage Dips,” IEEE Trans Power Electron, vol. 26, no. 5, pp. 1511–1521, May 2011, https://doi.org/10.1109/TPEL.2010.2052289 | |
| dc.relation | /*ref*/J. Jia, G. Yang, A. H. Nielsen, and P. Roenne‐Hansen, “Hardware‐in‐the‐loop tests on distance protection considering VSC fault‐ride‐through control strategies,” The Journal of Engineering, vol. 2018, no. 15, pp. 824–829, Oct. 2018, https://doi.org/10.1049/joe.2018.0248 | |
| dc.relation | /*ref*/ | |
| dc.rights | Derechos de autor 2022 TecnoLógicas | es-ES |
| dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0 | es-ES |
| dc.source | TecnoLógicas; Vol. 25 No. 55 (2022); e2347 | en-US |
| dc.source | TecnoLógicas; Vol. 25 Núm. 55 (2022); e2347 | es-ES |
| dc.source | 2256-5337 | |
| dc.source | 0123-7799 | |
| dc.subject | Grid-side converter | en-US |
| dc.subject | short-circuit current | en-US |
| dc.subject | controlled current source | en-US |
| dc.subject | inverter-based distributed generation | en-US |
| dc.subject | inverter EMT modeling | en-US |
| dc.subject | Convertidor del lado de la red | es-ES |
| dc.subject | corriente de cortocircuito | es-ES |
| dc.subject | fuente de corriente controlada | es-ES |
| dc.subject | generación distribuida basada en inversores | es-ES |
| dc.subject | Modelado EMT de inversores | es-ES |
| dc.title | Simplified Inverter-Based Generation Model for Protection and Short-Term Stability Studies in Electromagnetic Transient Resolution | en-US |
| dc.title | Modelo simplificado de generador basado en inversores para estudios de protecciones y estabilidad de corto plazo en resolución de transitorios electromagnéticos | es-ES |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |
| dc.type | Research Papers | en-US |
| dc.type | Artículos de investigación | es-ES |
Archivos
Bloque original
1 - 4 de 4