Risk Assessment of Heavy Metals in Acid Soils Collected from Different Agricultural Systems in the Piedemonte Llanero in Colombia

dc.creatorTrujillo-González, Juan Manuel
dc.creatorGarcía-Bravo, Deiver Alexis
dc.creatorRojas-Peña, Jose Ismael
dc.creatorSerrano-Gómez, Marlon
dc.creatorCastillo-Monroy, Edgar Fernando
dc.creatorTorres-Mora, Marco Aurelio
dc.creatorGarcía-Navarro, Francisco J.
dc.creatorJiménez-Ballesta, Raimundo
dc.date2023-07-14
dc.date.accessioned2025-10-01T23:53:09Z
dc.descriptionAgricultural soils may become polluted by heavy metals as a result of receiving a significant amount of pollutants from different sources of land applications, such as fertilizers, animal manure, sewage sludge, pesticides, and wastewater irrigation. Given that information on the distribution of heavy metals (HMs) in the Piedemonte Llanero of Colombia is still quite limited, the main objectives of this work were to characterize the content of these elements and their potential pollution level in acidic soils under different agricultural systems. The hypothesis is to verify if the type of land use poses an environmental threat. To achieve these goals, the concentrations of seven metals were determined in the soils of three agricultural production systems: oil palm, pastures, and semi-annual crops. Soil contamination was evaluated based on the Geo-Accumulation Index (I-geo), contamination factor (CF), Pollution Load Index (PLI), and Nemerov Integrated Pollution Index (NIPI). One outstanding result was that the average concentrations of HMs in the collected topsoil samples were as follows: Mn (110.5 mg kg-1), Zn (31.93 mg kg-1), Cr (8.85 mg kg-1), Ni (11.68 mg kg-1), Cu (11.28 mg kg-1), Pb (9.42 mg kg-1) and Cd (0.21 mg kg-1). The results obtained from this study provide an estimation of the pollution status of HMs. Agricultural activities, especially the overuse of phosphate fertilizer, were the main source of nutrients across the study area. This information can become a fundamental tool to establish monitoring and follow-up processes for sustainable soil management in the Piedemonte Llanero. In conclusion, the present study highlights and provides specific information in a hyperhumid environment.en-US
dc.descriptionLos suelos agrícolas pueden contaminarse con metales pesados como consecuencia de recibir una cantidad significativa de contaminantes procedentes de diferentes fuentes de aplicaciones terrestres, tales como fertilizantes, estiércol animal, lodos de depuradora, pesticidas y/o riego con aguas residuales. Dado que la información sobre la distribución de metales pesados (MP) en el Piedemonte llanero de Colombia es aún bastante limitada, el objetivo principal de este trabajo fue caracterizar el contenido de estos elementos y su potencial nivel de contaminación en suelos ácidos bajo diferentes sistemas agrícolas. La hipótesis es verificar si el tipo de uso representa una amenaza ambiental. Para lograr estos objetivos, se determinaron las concentraciones de siete metales en los suelos de tres sistemas de producción agrícola: palma aceitera, pastos y cultivos semestrales. La contaminación del suelo se evaluó con base al índice de geo-acumulación (I-geo), el factor de contaminación (FC), el índice de carga contaminación (ICC) y el índice de contaminación integrada de Nemerov (ICIN). Un resultado sobresaliente fue que las concentraciones promedio de MP en las muestras de suelo recolectadas fueron en general: Mn (110.5 mg kg-1), Zn (31.93 mg kg-1), Cr (8.85 mg kg-1), Ni (11.68 mg kg-1), Cu (11.28 mg kg-1), Pb (9.42 mg kg-1) y Cd (0.21 mg kg-1). Las actividades agrícolas, especialmente el uso excesivo de fertilizantes fosfatados, fueron la principal fuente de nutrientes en toda el área de estudio. Esta información puede convertirse en una herramienta básica para establecer procesos de monitoreo y seguimiento que permitan establecer un manejo sustentable del suelo en el Piedemonte llanero. Además, los resultados obtenidos de este estudio constituyen una estimación del estado de contaminación de los MP en el contexto específico de un ambiente hiperhúmedo.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2667
dc.identifier10.22430/22565337.2667
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7871
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2667/2902
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2667/2910
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2667/3128
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2667/3162
dc.relation/*ref*/P. S. Hooda, Trace elements in soils, Chichester, U.K. John Wiley & Sons, 2010. https://doi.org/10.1002/9781444319477
dc.relation/*ref*/M. Oves, M. S. Khan, A. Zaidi, and E. Ahmad, “Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview,” Toxicity of Heavy Metals to Legumes and Bioremediation, pp. 1-27, Feb. 2012. https://doi.org/10.1007/978-3-7091-0730-0_1
dc.relation/*ref*/M. Wen, Z. Ma, D. B. Gingerich, X. Zhao, and D. Zhao, “Heavy metals in agricultural soil in China: A systematic review and meta-analysis,” Eco-Environment & Health, vol. 1, no. 4, pp. 219-228, Dec. 2022. https://doi.org/10.1016/j.eehl.2022.10.004
dc.relation/*ref*/L. H. P. Jones, S. C. Jarvis, D. J. Green, and M. H. B. Hayes, Clay Minerals, The Chemistry of Soil Processes, Chichester, U.K. John Wiley & Sons, 2018. https://doi.org/10.1180/claymin.1982.017.2.14
dc.relation/*ref*/K. Weggler, M. J. McLaughlin, and R. D. Graham, “Effect of chloride in soil solution on the plant availability of biosolid‐borne cadmium,” Journal of Environmental Quality, vol. 33, no. 2, pp. 496-504, Mar. 2004. https://doi.org/10.2134/jeq2004.4960
dc.relation/*ref*/M. J. McLaughlin, R. E. Hamon, R. G. McLaren, T. W. Speir, and S. L. Rogers, “Review: A bioavailability-based rationale for controlling metal and metalloid contamination of agricultural land in Australia and New Zealand,” Soil Research, vol. 38, no. 6, pp. 1037-1086, 2000. https://doi.org/10.1071/SR99128
dc.relation/*ref*/M. E. Sumner, “Beneficial use of effluents, wastes, and biosolids,” Communications in Soil Science and Plant Analysis, vol. 31, no. 11-14, pp. 1701-1715, Nov. 2008. https://doi.org/10.1080/00103620009370532
dc.relation/*ref*/United States Environmental Protection Agency, Background Report on Fertilizer Use, Contaminants and Regulations, Columbus, 1999.
dc.relation/*ref*/F. Zeng et al, “The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants,” Environmental Pollution, vol. 159, no. 1, pp. 84-91, Jan. 2011. https://doi.org/10.1016/j.envpol.2010.09.019
dc.relation/*ref*/M.-L. Bloemen, B. Markert, and H. Lieth, “The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabrück in relation to land use,” Science of the Total Environment, vol. 166, no. 1-3, pp. 137-148, Apr. 1995. https://doi.org/10.1016/0048-9697(95)04520-B
dc.relation/*ref*/Z. Atafar et al., “Effect of fertilizer application on soil heavy metal concentration,” Environmental Monitoring and Assessment, vol. 160, pp. 83-89, Jan. 2010. https://doi.org/10.1007/s10661-008-0659-x
dc.relation/*ref*/B. Wei, J. Yu, Z. Cao, M. Meng, L. Yang, and Q. Chen, “The availability and accumulation of heavy metals in greenhouse soils associated with intensive fertilizer application,” International Journal of Environmental Research and Public Health, vol. 17, no. 15, pp. 5359, Jul. 2020. https://doi.org/10.3390/ijerph17155359
dc.relation/*ref*/A. Alengebawy, S. T. Abdelkhalek, S. R. Qureshi, and M.-Q. Wang “Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications”. Toxics, vol. 9, no. 3, p. 42, Feb. 2021. https://doi.org/10.3390/toxics9030042
dc.relation/*ref*/J. D. Mahecha-Pulido, J. M. Trujillo-González, and M. A. Torres-Mora, “Análisis de estudios en metales pesados en zonas agrícolas de Colombia,” Orinoquia, vol. 21, no. Extra 1, pp. 83-93, Apr. 2017. https://dialnet.unirioja.es/servlet/articulo?codigo=7051738
dc.relation/*ref*/J. D. Mahecha-Pulido, J. M. Trujillo-González, and M. A. Torres-Mora “Contenido de metales pesados en suelos agrícolas de la región del Ariari, Departamento del Meta,” Orinoquia, vol. 19, no. 1, pp. 118-122, Jun. 2015. https://www.redalyc.org/articulo.oa?id=89640816011
dc.relation/*ref*/D. D. Jamioy Orozco, J. C. Menjivar Flores, and Y. Rubiano Sanabria, “Indicadores químicos de calidad de suelos en sistemas productivos del Piedemonte de los Llanos Orientales de Colombia,” Acta agronómica, vol. 64, no. 4, pp. 302-307, Oct. 2015. https://doi.org/10.15446/acag.v64n4.38731
dc.relation/*ref*/M. A. Ramírez Niño and M. A. Navarro Ramírez, “Análisis de metales pesados en suelos irrigados con agua del río Guatiquía,” Ciencia En Desarrollo, vol. 6, no. 2, pp. 167-175, Jul. 2015. http://docplayer.es/22033351-Analisis-de-metales-pesados-en-suelos-irrigados-con-agua-del-rio-guatiquia.html
dc.relation/*ref*/Cormacarena, “Plan de Ordenación y Manejo de la Cuenca del río Acacías-Pajure. Plan de ordenación del recurso hídrico para el río Acacías y sus afluentes ríos Orotoy y Acaciitas”, Documento técnico. p. 160, 2012. https://www.cormacarena.gov.co/gestion-de-planificacion/pomcas/
dc.relation/*ref*/United States Department of Agriculture – Natural Resources Conservation Service, Soil Survey Staff. Keys to Soil Taxonomy. Tenth Edition, 2006. https://nrcspad.sc.egov.usda.gov/DistributionCenter/pdf.aspx?productID=459&KeystoSoilTaxonomy
dc.relation/*ref*/C. Micó, L. Recatalá, M. Peris, and J. Sánchez, “Assessing heavy metal sources in agricultural soils of and European Mediterranean area by multivariate analysis,” Chemosphere, vol. 65, no. 5, pp. 863-872, Oct. 2006. https://doi.org/10.1016/j.chemosphere.2006.03.016
dc.relation/*ref*/G. W. Gee and J. W. Bauder, “Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters,” Soil Science Society of America Journal, vol. 43, no. 5, pp. 1004-1007, Sep. 1979. https://doi.org/10.2136/sssaj1979.03615995004300050038x
dc.relation/*ref*/M. L. Jackson, Soil chemical analysis, India, Prentice Hall of Indian Pvt. Ltd, 1967. https://www.scirp.org/(S(i43dyn45teexjx455qlt3d2q))/reference/ReferencesPapers.aspx?ReferenceID=105097
dc.relation/*ref*/G. Müller, “Index of geo-accumulation in sediments of the Rhine River,” GeoJournal, vol. 2, no. 3, pp. 108-118, Jan. 1969. https://www.scinapse.io/papers/782739266
dc.relation/*ref*/L. L. García-Martínez and C. Poleto, “Assessment of diffuse pollution associated with metals in urban sediments using the geoaccumulation index (Igeo),” Journal of Soils and Sediments, vol. 14, no. 7, pp. 1251-1257, Feb. 2014. https://doi.org/10.1007/s11368-014-0871-y
dc.relation/*ref*/A. Daripa et al., “Risk assessment of agricultural soils surrounding an iron ore mine: A field study from Western Ghat of Goa, India,” Soil and Sediment Contamination: An International Journal, vol. 32, no. 5, pp. 570-590, Aug. 2022. https://doi.org/10.1080/15320383.2022.2111403
dc.relation/*ref*/L. Hakanson, “An ecological risk index for aquatic pollution control. A sedimentological approach,” Water Research, vol. 14, no. 8, pp. 975-1001, 1980. https://doi.org/10.1016/0043-1354(80)90143-8
dc.relation/*ref*/D. L. Tomlinson, J. G. Wilson, C. R. Harris, and D. W. Jeffrey, “Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index,” Helgoländer meeresuntersuchungen, vol. 33 no. 1, pp. 566-575, Mar. 1980. https://doi.org/10.1007/BF02414780
dc.relation/*ref*/J. M. Trujillo-González, M. A. Torres-Mora, M. Serrano-Gómez, E. F. Castillo-Monroy, and R. Jiménez-Ballesta, “Baseline values and environmental assessment for metal (loid)s in soils under a tropical rainy climate in a Colombian region”, Environmental Monitoring and Assessment, vol. 194, no. 494, Jun. 2022. https://doi.org/10.1007/s10661-022-10036-5
dc.relation/*ref*/A. M. Taiwo et al., “Spatial distribution, pollution index, receptor modelling and health risk assessment of metals in road dust from Lagos metropolis, Southwestern Nigeria,” Environmental Advances, vol. 2, p. 100012, Dec. 2020. https://doi.org/10.1016/j.envadv.2020.100012
dc.relation/*ref*/J. M. Trujillo-González, M. A. Torres-Mora, R. Jiménez Ballesta, and E. C. Brevik, “Spatial variability of the physicochemical properties of acidic soils along an altitudinal gradient in Colombia,” Environmental Earth Sciences, vol. 81, no. 108, Feb. 2022. https://doi.org/10.1007/s12665-022-10235-w
dc.relation/*ref*/J. M. Trujillo-González, J. D. Mahecha-Pulido, M. A. Torres-Mora, E. C. Brevik, S. D. Keesstra, and R. Jiménez-Ballesta, “Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate,” Agriculture, vol. 7, no. 7, p. 52, Jun. 2017. https://doi.org/10.3390/agriculture7070052
dc.relation/*ref*/Instituto Geográfico Agustín Codazzi, “Estudio General de Suelos y Zonificación de Tierras, Departamento de Meta,” Colombia, 2004. https://catalogo.unillanos.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=17983
dc.relation/*ref*/M. J. Yacomelo Hernández, “Riesgo toxicológico en personas expuestas, a suelos y vegetales, con posibles concentraciones de metales pesados, suelos en el sur del Atlántico, Colombia,” (Tesis de maestría), Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Medellín, 2014. https://repositorio.unal.edu.co/handle/unal/21826
dc.relation/*ref*/L. Chen, J. Wang, J. Beiyuan, X. Guo, H. Wu, and L. Fang, “Environmental and health risk assessment of potentially toxic trace elements in soils near uranium (U) mines: A global meta-analysis,” Sci Total Environ, vol. 816, p. 151556, Apr. 2021. https://doi.org/10.1016/j.scitotenv.2021.151556
dc.relation/*ref*/S. Khan, Q. Cao, Y. M. Zheng, Y. Z. Huang, and Y. G. Zhu, “Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China,” Environmental Pollution, vol. 152, no. 3, pp. 686-692, Apr. 2008. https://doi.org/10.1016/j.envpol.2007.06.056
dc.relation/*ref*/F. Faridullah, M. Umar, A. Alam, M. A. Sabir, and D. Khan, “Assessment of heavy metals concentration in phosphate rock deposits, Hazara basin, Lesser Himalaya Pakistan,” Geosciences Journal, vol. 21, no 5, pp. 743-752, Aug. 2017. https://doi.org/10.1007/s12303-017-0013-9
dc.relation/*ref*/S. S. Das et al., “Soil health and its relationship with food security and human health to meet the sustainable development goals in India,” Soil Security, vol. 8, p. 100071, Sep. 2022.https://doi.org/10.1016/j.soisec.2022.100071
dc.rightsDerechos de autor 2023 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 26 No. 57 (2023); e2667en-US
dc.sourceTecnoLógicas; Vol. 26 Núm. 57 (2023); e2667es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectContamination factoren-US
dc.subjectpollution load indexen-US
dc.subjectNemerov integrated pollution indexen-US
dc.subjectgeo-accumulation indexen-US
dc.subjectheavy metalsen-US
dc.subjecttropical soilsen-US
dc.subjectFactor de contaminaciónes-ES
dc.subjectíndice de carga de contaminaciónes-ES
dc.subjectíndice de contaminación integrado de Nemeroves-ES
dc.subjectÍndice de geoacumulaciónes-ES
dc.subjectmetales pesadoses-ES
dc.subjectsuelos tropicaleses-ES
dc.titleRisk Assessment of Heavy Metals in Acid Soils Collected from Different Agricultural Systems in the Piedemonte Llanero in Colombiaen-US
dc.titleEvaluación del riesgo por metales pesados en suelos ácidos bajo diferentes sistemas agrícolas en el Piedemonte Llanero de Colombiaes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
2667-MPU-VF.pdf
Tamaño:
363.35 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
2256-5337-teclo-26-57-e202.xml
Tamaño:
97 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
344276660004.epub
Tamaño:
714.38 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
3162.html
Tamaño:
120.08 KB
Formato:
Hypertext Markup Language