Power Converters for Microgrids and Distributed Generation Systems

dc.creatorOsorio, Estefany
dc.creatorSaavedra-Montes, Andrés Julián
dc.creatorRamos-Paja, Carlos Andrés
dc.creatorHerrera Murcia, Javier Gustavo
dc.creatorBastidas-Rodríguez, Juan David
dc.date2023-08-14
dc.date.accessioned2025-10-01T23:52:51Z
dc.descriptionThis paper presents an overview and critical discussion about the utilization of power converters in several microgrid configurations that incorporate non-conventional renewable energy sources and energy storage. The methodology is developed over 69 works published in this research topic. The papers are selected from databases in electrical engineering, e.g., IEEExplore, ScienceDirect, Springer, MDPI, etc. Then, the papers are classified depending on its focus, i.e., power converters in microgrids or power converters in distribution systems. At least, three classifications are proposed and one of them is made over more than 40 papers about power converters used in microgrids and electric distribution systems. Given the wide variety of microgrids and their configurations, the selection of appropriate power converters for every scenario is not trivial; therefore, this work also classifies the converters in their most common application, their advantages and disadvantages, and also point out the study domain, i.e., simulation or physical implementation. One of the main conclusions made from the overview is a gap identified in the study of direct current/ direct current microgrids despite being the simplest configuration among the three analyzed configurations. This is because hybrid and alternate current microgrids are more widely used since they allow taking advantage of the infrastructure of the current electrical systems.en-US
dc.descriptionEste artículo presenta una visión general y una discusión crítica sobre la utilización de convertidores de potencia en varias configuraciones de microrredes que incorporan fuentes de energía renovable no convencionales y almacenamiento de energía. La metodología se desarrolla sobre 69 trabajos publicados en este tema de investigación. Los documentos se seleccionan de bases de datos en ingeniería eléctrica, p. ej. IEEExplore, ScienceDirect, Springer, MDPI, etc. Luego, los artículos se clasifican según su enfoque, es decir, convertidores de potencia en microrredes o convertidores de potencia en sistemas de distribución. Se proponen al menos tres clasificaciones y una de ellas se realiza sobre más de 40 artículos sobre convertidores de potencia utilizados en microrredes y sistemas de distribución eléctrica. Dada la gran variedad de microrredes y sus configuraciones, la selección de convertidores de potencia apropiados para cada escenario no es trivial; por lo tanto, este trabajo también clasifica a los convertidores en su aplicación más común, sus ventajas y desventajas, y también señala el dominio de estudio, es decir, simulación o implementación física. Una de las principales conclusiones extraídas de la visión general es una brecha identificada en el estudio de las microrredes de corriente continua / corriente continua a pesar de ser la configuración más simple entre las tres configuraciones analizadas. Esto se debe a que las microrredes híbridas y de corriente alterna son las más utilizadas ya que permiten aprovechar la infraestructura de los sistemas eléctricos actuales.es-ES
dc.formatapplication/pdf
dc.formattext/xml
dc.formatapplication/zip
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2498
dc.identifier10.22430/22565337.2498
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7855
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2498/2914
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2498/3303
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2498/3136
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2498/3155
dc.relation/*ref*/A. H. Mohsenian-Rad and A. Leon-Garcia, “Distributed Internet-Based Load Altering Attacks Against Smart Power Grids,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 667–674, Dec. 2011. https://doi.org/10.1109/TSG.2011.2160297
dc.relation/*ref*/S. Ansari, A. Chandel, and M. Tariq, “A Comprehensive Review on Power Converters Control and Control Strategies of AC/DC Microgrid,” IEEE Access, vol. 9, pp. 17998–18015, 2021. https://doi.org/10.1109/ACCESS.2020.3020035
dc.relation/*ref*/A. Ordono, E. Unamuno, J. A. Barrena, and J. Paniagua, “Interlinking converters and their contribution to primary regulation: a review,” Int. J. Electr. Power Energy Syst., vol. 111, pp. 44–57, Oct. 2019. https://doi.org/10.1016/j.ijepes.2019.03.057
dc.relation/*ref*/X. Wei, X. Xiangning, and C. Pengwei, “Overview of key microgrid technologies,” Int. Trans. Electr. Energy Syst., vol. 28, no. 7, p. e2566, Mar. 2018. https://doi.org/10.1002/etep.2566
dc.relation/*ref*/K. Kabirifar and M. Mojtahedi, “The impact of Engineering, Procurement and Construction (EPC) phases on project performance: A case of large-scale residential construction project,” Buildings, vol. 9, no. 1, p. 15, Jan. 2019. https://doi.org/10.3390/buildings9010015
dc.relation/*ref*/F. Taghizadeh-Hesary, N. Yoshino, E. Rasoulinezhad, and C. Rimaud, “Power purchase agreements with incremental tariffs in local currency: An innovative green finance tool,” Glob. Financ. J., vol. 50, p. 100666, Nov. 2021. https://doi.org/10.1016/j.gfj.2021.100666
dc.relation/*ref*/J. Hu, Y. Shan, J. M. Guerrero, A. Ioinovici, K. W. Chan, and J. Rodriguez, “Model predictive control of microgrids – An overview,” Renew. Sustain. Energy Rev., vol. 136, p. 110422, Feb. 2021. https://www.doi.org/10.1016/j.rser.2020.110422
dc.relation/*ref*/B. K. Poolla, D. Groß, and F. Dörfler, “Placement and Implementation of Grid-Forming and Grid-Following Virtual Inertia and Fast Frequency Response,” IEEE Trans. Power Syst., vol. 34, no. 4, pp. 3035–3046, Jul. 2019. https://doi.org/0.1109/TPWRS.2019.2892290
dc.relation/*ref*/D. Wang and H. Wu, “Application of virtual synchronous generator technology in microgrid,” In 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), Hefei, 2016, pp. 3142–3148. https://www.doi.org/10.1109/IPEMC.2016.7512798
dc.relation/*ref*/J. Chen and T. O’Donnell, “Parameter Constraints for Virtual Synchronous Generator Considering Stability,” IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2479–2481, May. 2019. https://www.doi.org/10.1109/TPWRS.2019.2896853
dc.relation/*ref*/J. Liu, Y. Miura, H. Bevrani, and T. Ise, “Enhanced Virtual Synchronous Generator Control for Parallel Inverters in Microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2268–2277, Sep. 2017. https://www.doi.org/10.1109/TSG.2016.2521405
dc.relation/*ref*/A. Fathi, Q. Shafiee, and H. Bevrani, “Robust Frequency Control of Microgrids Using an Extended Virtual Synchronous Generator,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6289–6297, Nov. 2018. https://www.doi.org/10.1109/TPWRS.2018.2850880
dc.relation/*ref*/M. Gaiceanu, I. N. Arama, and I. Ghenea, "Power Electronic Converters in AC Microgrid," In Microgrid Architectures, Control and Protection Methods, Cham, Power Systems Springer. 2020, pp. 139–175. https://www.doi.org/10.1007/978-3-030-23723-3_7
dc.relation/*ref*/B. Toual, L. Mokrani, A. Kouzou, and M. Machmoum, “Power quality and capability enhancement of a wind-solar-battery hybrid power system,” Period. Polytech. Electr. Eng. Comput. Sci., vol. 64, no. 2, pp. 115–132, Jan. 2020. https://www.doi.org/10.3311/PPEE.14437
dc.relation/*ref*/T. Dragičević, L. Meng, F. Blaabjerg, and Y. Li, “Control of Power Converters in ac and dc Microgrids,” Wiley Encycl. Electr. Electron. Eng., Feb. 2019. https://www.doi.org/10.1002/047134608x.w8389
dc.relation/*ref*/P. Rodriguez, I. Candela, C. Citro, J. Rocabert and A. Luna, "Control of grid-connected power converters based on a virtual admittance control loop," In 2013 15th European Conference on Power Electronics and Applications (EPE), Lille, 2013, pp. 1-10. https://doi.org/10.1109/EPE.2013.6634621
dc.relation/*ref*/O. Palizban, K. Kauhaniemi, and J. M. Guerrero, “Microgrids in active network management - Part I: Hierarchical control, energy storage, virtual power plants, and market participation,” Renew. Sustain. Energy Rev., vol. 36, pp. 428–439, Aug. 2014. https://doi.org/10.1016/j.rser.2014.01.016
dc.relation/*ref*/J. Rocabert, A. Luna, F. Blaabjerg, and P. Rodríguez, Control of Power Converters in AC Microgrids, Mahdavi Tabatabaei, Power Systems, 2012. https://www.doi.org/10.1007/978-3-030-23723-3_13
dc.relation/*ref*/F. Z. Peng, Y. W. Li, and L. M. Tolbert, "Control and protection of power electronics interfaced distributed generation systems in a customer-driven microgrid," In 2009 IEEE Power & Energy Society General Meeting, Calgary, 2009, pp. 1-8. https://doi.org/10.1109/PES.2009.5275191
dc.relation/*ref*/T. C. Green and M. Prodanović, “Control of inverter-based micro-grids,” Electr. Power Syst. Res., vol. 77, no. 9, pp. 1204–1213, Jul. 2007. https://doi.org/10.1016/j.epsr.2006.08.017
dc.relation/*ref*/A. Ordono, E. Unamuno, J. A. Barrena, and J. Paniagua, “Interlinking converters and their contribution to primary regulation: a review,” Int. J. Electr. Power Energy Syst., vol. 111, pp. 44–57, Oct. 2019. https://doi.org/10.1016/j.ijepes.2019.03.057
dc.relation/*ref*/G. Guarderas, A. Francés, R. Asensi, and J. Uceda, "Large-signal black-box behavioral modeling of grid-supporting power converters in AC microgrids," In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, 2017, pp. 153-158. https://doi.org/10.1109/ICRERA.2017.8191258
dc.relation/*ref*/H.- J. Yoo, T.- T. Nguyen, and H.- M. Kim, “Multi-frequency control in a stand-alone multi-microgrid system using a back-to-back converter,” Energies, vol. 10, no. 6, p. 822, Jun. 2017. https://doi.org/10.3390/en10060822
dc.relation/*ref*/Y. Xu, J. Zhang, W. Wang, A. Juneja, and S. Bhattacharya, "Energy router: Architectures and functionalities toward Energy Internet," In 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, 2011, pp. 31-36. https://doi.org/10.1109/SmartGridComm.2011.6102340
dc.relation/*ref*/Y. Ma, X. Wang, X. Zhou and Z. Gao, "An overview of energy routers," In 2017 29th Chinese Control And Decision Conference (CCDC), Chongqing, 2017, pp. 4104-4108. https://doi.org/10.1109/CCDC.2017.7979219
dc.relation/*ref*/H. Alrajhi Alsiraji and R. El-Shatshat, "Serious Operation Issues and Challenges Related to Multiple Interlinking Converters Interfacing a Hybrid AC/DC Microgrid," In 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec, 2018, pp. 1-5. https://doi.org/10.1109/CCECE.2018.8447831
dc.relation/*ref*/M. Hosseinzadeh and F. R. Salmasi, “Robust optimal power management system for a hybrid AC/DC micro-grid,” IEEE Trans. Sustain. Energy, vol. 6, no. 3, pp. 675–687, Jul. 2015. https://doi.org/10.1109/TSTE.2015.2405935
dc.relation/*ref*/P. Li, T. Guo, F. Zhou, J. Yang, and Y. Liu, “Nonlinear coordinated control of parallel bidirectional power converters in an AC/DC hybrid microgrid,” Int. J. Electr. Power Energy Syst., vol. 122, p. 106208, Nov. 2020. https://doi.org/10.1016/j.ijepes.2020.106208
dc.relation/*ref*/J. Huang, J. Xiao, C. Wen, P. Wang, and A. Zhang, “Implementation of Bidirectional Resonant DC Transformer in Hybrid AC/DC Micro-Grid,” IEEE Trans. Smart Grid, vol. 10, no. 2, pp. 1532–1542, Mar. 2019. https://doi.org/10.1109/TSG.2017.2771822
dc.relation/*ref*/Z. Lv, Y. Zhang, Y. Xia, and W. Wei, “Adjustable inertia implemented by bidirectional power converter in hybrid AC/DC microgrid,” IET Gener. Transm. Distrib., vol. 14, no. 17, pp. 3594–3603, Jul. 2020. https://doi.org/10.1049/iet-gtd.2020.0279
dc.relation/*ref*/M. Kumar, S. C. Srivastava, S. N. Singh, and M. Ramamoorty, “Development of a control strategy for interconnection of islanded direct current microgrids,” IET Renew. Power Gener., vol. 9, no. 3, pp. 284–296, Apr. 2015. https://doi.org/10.1049/iet-rpg.2013.0375
dc.relation/*ref*/J. Ma, M. Zhu, X. Cai and Y. W. Li, "Configuration and operation of DC microgrid cluster linked through DC-DC converter," In 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, 2016, pp. 2565-2570. https://doi.org/10.1109/ICIEA.2016.7604026
dc.relation/*ref*/D. R. Aryani and H. Song, “Coordination control strategy for AC/DC hybrid microgrids in stand-alone mode,” Energies, vol. 9, no. 6, p. 469, Jun. 2016. https://doi.org/10.3390/en9060469
dc.relation/*ref*/P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous control of interlinking converter with energy storage in hybrid AC-DC microgrid,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1374–1382, May. 2013. https://doi.org/10.1109/TIA.2013.2252319
dc.relation/*ref*/P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Hybrid AC-DC microgrids with energy storages and progressive energy flow tuning,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1533–1543, Apr. 2013. https://www.doi.org/10.1109/TPEL.2012.2210445
dc.relation/*ref*/A. S. Morais and L. A. C. Lopes, "Interlink Converters in DC nanogrids and its effect in power sharing using distributed control," In 2016 IEEE 7th International Symposium on Power Electronics for Distributed Generation Systems (PEDG), Vancouver, 2016, pp. 1-7. https://www.doi.org/10.1109/PEDG.2016.7527077
dc.relation/*ref*/B. Karanayil, M. Ciobotaru, and V. G. Agelidis, “Power flow management of isolated multiport converter for more electric aircraft,” IEEE Trans. Power Electron., vol. 32, no. 7, pp. 5850–5861, Jul. 2017. https://www.doi.org/10.1109/TPEL.2016.2614019
dc.relation/*ref*/X. Li et al., “Flexible Interlinking and Coordinated Power Control of Multiple DC Microgrids Clusters,” IEEE Trans. Sustain. Energy, vol. 9, no. 2, pp. 904–915, Apr. 2018. https://www.doi.org/10.1109/TSTE.2017.2765681
dc.relation/*ref*/M. Lee, W. Choi, H. Kim and B. -H. Cho, "Operation schemes of interconnected DC microgrids through an isolated bi-directional DC-DC converter," In 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, 2015, pp. 2940-2945. https://www.doi.org/10.1109/APEC.2015.7104769
dc.relation/*ref*/S. Konar and A. Ghosh, "Interconnection of islanded DC microgrids," In 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, 2015, pp. 1-5. https://www.doi.org/10.1109/APPEEC.2015.7380986
dc.relation/*ref*/R. Haghmaram, F. Sedaghati, and R. Ghafarpour, “Power exchange among microgrids using modular-isolated bidirectional DC–DC converter,” Electr. Eng., vol. 99, pp. 441–454, Sep. 2016. https://www.doi.org/10.1007/s00202-016-0437-7
dc.relation/*ref*/R. Majumder, A. Ghosh, G. Ledwich, and F. Zare, “Power management and power flow control with back-to-back converters in a utility connected microgrid,” IEEE Trans. Power Syst., vol. 25, no. 2, pp. 821–834, May. 2010. https://www.doi.org/10.1109/TPWRS.2009.2034666
dc.relation/*ref*/Y. Shu, G. Tang, and H. Pang, “A back-to-back VSC-HVDC system of Yu-E power transmission lines to improve cross-region capacity,” CSEE J. Power Energy Syst., vol. 6, no. 1, pp. 64–71, Mar. 2020. https://www.doi.org/10.17775/CSEEJPES.2018.01280
dc.relation/*ref*/M. Goyal and A. Ghosh, “Microgrids interconnection to support mutually during any contingency,” Sustain. Energy, Grids Networks, vol. 6, pp. 100–108, Jun. 2016. https://www.doi.org/10.1016/j.segan.2016.02.006
dc.relation/*ref*/Q. Sun, J. Zhou, J. M. Guerrero, and H. Zhang, “Hybrid Three-Phase/Single-Phase Microgrid Architecture With Power Management Capabilities,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5964–5977, Oct. 2015. https://www.doi.org/10.1109/TPEL.2014.2379925
dc.relation/*ref*/Y. Liu, Y. Fang, and J. Li, “Interconnecting microgrids via the energy router with smart energy management,” Energies, vol. 10, no. 9, p. 1297, Aug. 2017. https://www.doi.org/10.3390/en10091297
dc.relation/*ref*/N. Deng, X. -P. Zhang, P. Wang, X. Gu and M. Wu, "A converter-based general interface for AC microgrid integrating to the grid," In IEEE PES ISGT Europe 2013, Lyngby, 2013, pp. 1-5. https://www.doi.org/10.1109/ISGTEurope.2013.6695391
dc.relation/*ref*/N. Deng and X. -P. Zhang, "A novel management scheme of multiple microgrids via a common interface," In 11th IET International Conference on AC and DC Power Transmission, Birmingham, 2015, pp. 1-66. https://www.doi.org/10.1049/cp.2015.0059
dc.relation/*ref*/R. Majumder, "A Hybrid Microgrid With DC Connection at Back to Back Converters," IEEE Transactions on Smart Grid, vol. 5, no. 1, pp. 251-259, Jan. 2014. https://www.doi.org/10.1109/TSG.2013.2263847
dc.relation/*ref*/I. U. Nutkani, P. C. Loh, P. Wang, T. K. Jet, and F. Blaabjerg, “Intertied ac-ac microgrids with autonomous power import and export,” Int. J. Electr. Power Energy Syst., vol. 65, pp. 385–393, Feb. 2015. https://www.doi.org/10.1016/j.ijepes.2014.10.040
dc.relation/*ref*/I. U. Nutkani, P. C. Loh, and F. Blaabjerg, “Power flow control of intertied ac microgrids,” IET Power Electron., vol. 6, no. 7, pp. 1329–1338, Aug. 2013. https://www.doi.org/10.1049/iet-pel.2012.0640
dc.relation/*ref*/S. Bala and G. Venkataramanan, "Autonomous power electronic interfaces between microgrids," In 2009 IEEE Energy Conversion Congress and Exposition, San Jose, 2009, pp. 3006-3013. https://www.doi.org/10.1109/ECCE.2009.5316062
dc.relation/*ref*/J. Susanto, F. Shahnia, A. Ghosh, and S. Rajakaruna, "Interconnected microgrids via back-to-back converters for dynamic frequency support," In 2014 Australasian Universities Power Engineering Conference (AUPEC), Perth, 2014, pp. 1-6. https://www.doi.org/10.1109/AUPEC.2014.6966616
dc.relation/*ref*/Z. -X. Zou, G. Buticchi, and M. Liserre, "Control and communication in the Smart Transformer-fed grid," In 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, 2016, pp. 1-9. https://www.doi.org/10.1109/ETFA.2016.7733495
dc.relation/*ref*/C. Kumar, Z. Zou and M. Liserre, "Smart transformer-based hybrid grid loads support in partial disconnection of MV/HV power system," In 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, 2016, pp. 1-8. https://www.doi.org/10.1109/ECCE.2016.7855451
dc.relation/*ref*/W. A. Rodrigues, R. A. S. Santana, A. P. L. Cota, T. R. Oliveira, L. M. F. Morais and P. C. Cortizo, "Integration of solid state transformer with DC microgrid system," In 2016 IEEE 2nd Annual Southern Power Electronics Conference (SPEC), Auckland, 2016, pp. 1-6. https://www.doi.org/10.1109/SPEC.2016.7846176
dc.relation/*ref*/S. Bifaretti, P. Zanchetta, A. Watson, L. Tarisciotti, and J. C. Clare, "Advanced Power Electronic Conversion and Control System for Universal and Flexible Power Management," IEEE Transactions on Smart Grid, vol. 2, no. 2, pp. 231-243, Jun. 2011. https://www.doi.org/10.1109/TSG.2011.2115260
dc.relation/*ref*/X. She, A. Q. Huang, S. Lukic, and M. E. Baran, “On integration of solid-state transformer with zonal DC microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 2, pp. 975–985, Jun. 2012. https://www.doi.org/10.1109/TSG.2012.2187317
dc.relation/*ref*/X. Yu, X. She, X. Zhou, and A. Q. Huang, “Power management for DC microgrid enabled by solid-state transformer,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 954–965, Mar. 2014. https://www.doi.org/10.1109/TSG.2013.2277977
dc.relation/*ref*/R. Jadeja, A. Ved, T. Trivedi, and G. Khanduja, “Control of Power Electronic Converters in AC Microgrid,” In Microgrid Architectures, Control and Protection Methods. Power Systems. Cham, 2019, pp 329–355. https://www.doi.org/10.1007/978-3-030-23723-3_13
dc.relation/*ref*/T. C. Green and M. Prodanović, “Control of inverter-based micro-grids,” Electr. Power Syst. Res., vol. 77, no. 9, pp. 1204–1213, Jul. 2007. https://www.doi.org/10.1016/j.epsr.2006.08.017
dc.relation/*ref*/D. A. Herrera-Jaramillo, D. González Montoya, E. E. Henao-Bravo, C. A. Ramos-Paja, and A. J. Saavedra-Montes, “Systematic analysis of control techniques for the dual active bridge converter in photovoltaic applications,” Int. J. Circuit Theory Appl., vol. 49, no. 9, pp. 3031–3052, Apr. 2021. https://www.doi.org/10.1002/cta.3031
dc.relation/*ref*/M. Neubert, A. Gorodnichev, J. Gottschlich, and R. W. De Doncker, "Performance analysis of a triple-active bridge converter for interconnection of future dc-grids," In 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, 2016, pp. 1-8. https://www.doi.org/10.1109/ECCE.2016.7855337
dc.relation/*ref*/S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and control schemes of bidirectional DC–DC power converters: An overview,” IEEE Access, vol. 7, pp. 117997–118019, Aug. 2019. https://www.doi.org/10.1109/ACCESS.2019.2937239
dc.relation/*ref*/V. M. Iyer, S. Gulur, S. Bhattacharya, and R. Ramabhadran, "A Partial Power Converter Interface for Battery Energy Storage Integration with a DC Microgrid," In 2019 IEEE Energy Conversion Congress and Exposition (ECCE), Baltimore, 2019, pp. 5783-5790. https://www.doi.org/10.1109/ECCE.2019.8912590
dc.relation/*ref*/H. Yépez, W. Pavón, S. Simani, E. Ayala and A. B. Asiedu-Asante, "Source Inverter Voltage and Frequency Control for AC Isolated Microgrid Applications," In 2022 IEEE 7th International Energy Conference (ENERGYCON), Riga, 2022, pp. 1-6. https://www.doi.org/10.1109/ENERGYCON53164.2022.9830410
dc.relation/*ref*/M. Montufar, W. Pavón, M. Jaramillo, and S. Simani, “Control Strategy Applied to Smart Photovoltaic Inverters for Reactive Power Exchange Through Volt-Var Control to Improve Voltage Quality in Electrical Distribution Networks,” In Communication, Smart Technologies and Innovation for Society, Singapore, Smart Innovation, Systems and Technologies, 2021, pp 357–366. https://www.doi.org/10.1007/978-981-16-4126-8_33
dc.relation/*ref*/M. Lema, W. Pavon, L. Ortiz, A.B. Asiedu-Asante and S. Simani, “Controller Coordination Strategy for DC Microgrid Using Distributed Predictive Control Improving Voltage Stability” Energies, vol. 15, no. 15, p. 5442, Jul. 2022. https://www.doi.org/10.3390/en15155442
dc.relation/*ref*/W. Pavon, E. Inga, S. Simani and M. Nonato, “A Review on Optimal Control for the Smart Grid Electrical Substation Enhancing Transition Stability,” Energies, vol. 14, no. 24, p. 8451, Nov. 2021. https://www.doi.org/10.3390/en1424845
dc.rightsDerechos de autor 2023 TecnoLógicases-ES
dc.rightshttps://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 26 No. 57 (2023); e2498en-US
dc.sourceTecnoLógicas; Vol. 26 Núm. 57 (2023); e2498es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectPower convertersen-US
dc.subjectrenewable energy sourcesen-US
dc.subjectdistributed power generationen-US
dc.subjectinterlinked microgridsen-US
dc.subjectConvertidores de potenciaes-ES
dc.subjectfuentes de energía renovablees-ES
dc.subjectgeneración distribuidaes-ES
dc.subjectmicrorredes interconectadases-ES
dc.titlePower Converters for Microgrids and Distributed Generation Systemsen-US
dc.titleConvertidores de potencia para microrredes y sistemas de generación distribuidoses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
2498-MPU-VF.pdf
Tamaño:
837.49 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
344276660012.xml
Tamaño:
155.64 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
344276660012.epub
Tamaño:
694.04 KB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
3155.html
Tamaño:
146.2 KB
Formato:
Hypertext Markup Language