Design, Analysis, and Modeling of Curved Photovoltaic Surfaces Using Composite Materials

dc.creatorEspitia-Mesa, Gabriel
dc.creatorHernández-Pedraza, Efraín
dc.creatorMolina-Tamayo, Santiago
dc.creatorMejía-Gutiérrez, Ricardo
dc.date2022-05-26
dc.date.accessioned2025-10-01T23:52:46Z
dc.descriptionCurrently, the use of photovoltaic solar energy has increased considerably due to the development of new materials and the ease to produce them, which has significantly reduced its acquisition costs. Most commercial photovoltaic modules have a flat geometry and are manufactured using metal reinforcement plates and glass sheets, which limits their use in irregular surfaces such as roofs and facades (BIPV) and the transportation sector (VIPV). The purpose of this study is to analyze the design implications of curved photovoltaic surfaces using composite materials. Considering operation and maintenance requirements, the most suitable reinforcement and encapsulation materials are selected based on references and experimental tests. It was found that the maximum radius of curvature that a polycrystalline silicon cell with the dimensions of a SunPower C60 model can achieve is 6.51 m for a failure probability lower than 5 %, which allows us to define the maximum curvature that this photovoltaic surface can reach. Additionally, an analytical model of the reinforcement was implemented using macromechanical models in Matlab™, which was validated by the finite element method employing the composite materials module in Ansys®. Therefore, this paper presents a detailed analysis of the shear stresses between the layers and of the deformations generated in the curved solar panel reinforcement. Finally, under the operating conditions assumed here, carbon fiber presents the best structural behavior in the reinforcement material, while epoxy resin exhibits a better performance in the encapsulation material. These results can facilitate the manufacturing of curved photovoltaic surfaces.en-US
dc.descriptionActualmente, el uso de la energía solar fotovoltaica ha aumentado de manera importante a partir del desarrollo de nuevos materiales y la facilidad de producción de los mismos, lo cual ha disminuido significativamente los costos de adquisición. Comercialmente, la mayoría de los módulos fotovoltaicos tienen geometrías planas y se fabrican a partir de placas de refuerzo metálico y láminas de vidrio, lo cual limita su uso en superficies irregulares como techos y fachadas (BIPV) y en el sector del transporte (VIPV). El propósito de este estudio es analizar las implicaciones de diseño de superficies fotovoltaicas con curvatura usando materiales compuestos. Partiendo de la definición de los requerimientos de operación y mantenimiento, se seleccionan los materiales de refuerzo y encapsulado más adecuados a partir de referencias y pruebas experimentales. Se obtiene que el radio de curvatura máximo alcanzado por una celda de silicio policristalina con las dimensiones de la referencia SunPower C60 es de 6,51 m para una probabilidad de falla menor al 5 %, lo que permite definir la curvatura máxima que puede alcanzar la superficie fotovoltaica. También se implementa un modelo analítico del refuerzo usando modelos de macromecánica a través de Matlab™, el cual es validado por el método de los elementos finitos usando el módulo de materiales compuestos de Ansys®. De esta manera, se presenta un análisis detallado de los esfuerzos cortantes entre las capas y de las deformaciones generadas en el refuerzo del panel solar curvo. Finalmente, para las condiciones de operación analizadas, el mejor comportamiento estructural en el material refuerzo lo presenta la fibra de carbono, mientras que, para el material de encapsulado, la resina epóxica presenta un mejor comportamiento. Estos resultados pueden facilitar la fabricación de superficies fotovoltaicas con curvatura.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2171
dc.identifier10.22430/22565337.2171
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7811
dc.languageeng
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2171/2393
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2171/2395
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2171/2396
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2171/2410
dc.relation/*ref*/G. Espitia-Mesa; E. Hernández-Pedraza; S. Molina-Tamayo; R. Mejía-Gutiérrez,” Modeling, analysis and simulation of curved solar cell’s encapsulation reinforcement”, in Workshop on Engineering Applications, Bogotá: Springer, pp. 468–479, 2021.
dc.relation/*ref*/A. F. Zobaa; R. C. Bansal, Handbook of Renewable Energy Technology. World Scientific, 2011. https://doi.org/10.1142/7489
dc.relation/*ref*/J. Hauff et al., Unlocking the sunbelt potential of photovoltaics. European Photovoltaic Industry Association and Others, 2010.
dc.relation/*ref*/Y. B. Assoa; D. Levrard, “A lightweight triangular building integrated photovoltaic module”. Applied Energy, vol. 279, p. 115816, Dec. 2020. https://doi.org/10.1016/j.apenergy.2020.115816
dc.relation/*ref*/P. Jayathissa; S. Caranovic; J. Hofer; Z. Nagy; A. Schlueter, “Performative design environment for kinetic photovoltaic architecture”, Automation in Construction, vol. 93, pp. 339–347, Sep. 2018. https://doi.org/10.1016/j.autcon.2018.05.013
dc.relation/*ref*/E. Saretta; P. Caputo; F. Frontini, “An integrated 3D GIS-based method for estimating the urban potential of BIPV retrofit of façades”, Sustainable Cities and Society, vol. 62, p. 102410, Nov. 2020. https://doi.org/10.1016/j.scs.2020.102410
dc.relation/*ref*/W. Liu; T. T. Chow, “Experimental and numerical analysis of solar absorbing metallic facade panel with embedded heat-pipe-array”, Applied Energy, vol. 265, p. 114736, May. 2020. https://doi.org/10.1016/j.apenergy.2020.114736
dc.relation/*ref*/S. R. Maadi; M. Khatibi; E. Ebrahimnia-Bajestan; D. Wood, “Coupled thermal-optical numerical modeling of PV/T module – combining CFD approach and two-band radiation DO model”, Energy Conversion and Management, vol. 198, p. 111781, Oct. 2019. https://doi.org/10.1016/j.enconman.2019.111781
dc.relation/*ref*/M. C. Brito; T. Santos; F. Moura; D. Pera; J. Rocha, “Urban solar potential for vehicle integrated photovoltaics”, Transportation Research Part D: Transport and Environment, vol. 94, p. 102810, May. 2021. https://doi.org/10.1016/j.trd.2021.102810
dc.relation/*ref*/H. Martin; R. Buffat; D. Bucher; J. Hamper; M. Raubal, “Using rooftop photovoltaic generation to cover individual electric vehicle demand—a detailed case study”. Renewable and Sustainable Energy Reviews, vol. 157, p. 111969, Jan. 2022.
dc.relation/*ref*/Y. Ota; K. Araki; A. Nagaoka; K. Nishioka; Facilitating vehicle-integrated photovoltaics by considering the radius of curvature of the roof surface for solar cell coverage. Cleaner Engineering and Technology, vol. 7, p. 100446, Apr. 2022. https://doi.org/10.1016/j.clet.2022.100446
dc.relation/*ref*/D. J. Vergados; I. Mamounakis; P. Makris; E. Varvarigos, “Prosumer clustering into virtual microgrids for cost reduction in renewable energy trading markets”. Sustainable Energy, Grids and Networks, vol. 7, pp. 90–103, Sep. 2016. https://doi.org/10.1016/j.segan.2016.06.002
dc.relation/*ref*/V. Makarskas; M. Jurevičius; J. Zakis; A. Kilikevičius; S. Borodinas; J. Matijošius; K. Kilikevičienė, “Investigation of the influence of hail mechanical impact parameters on photovoltaic modules”, Engineering Failure Analysis, vol. 124, p. 105309, Jun. 2021. https://doi.org/10.1016/j.engfailanal.2021.105309
dc.relation/*ref*/H. Hanifi; C. Pfau; M. T. J. Schneider, “A practical optical and electrical model to estimate the power losses and quantification of different heat sources in silicon based PV modules”. Renewable Energy, vol. 127, pp. 602–612, Nov. 2018. https://doi.org/10.1016/j.renene.2018.04.060
dc.relation/*ref*/G. Wang; Y. Yao; B. Wang; P. Hu, “Design and thermodynamic analysis of aninnovative hybrid solar PV-CT system with multi-segment PV panels”. SustainableEnergy Technologies and Assessments, vol. 37, p. 100631, Feb. 2020. https://doi.org/10.1016/j.seta.2020.100631
dc.relation/*ref*/A. E. Kabeel; M. Abdelgaied, “Performance enhancement of a photovoltaic panel with reflectors and cooling coupled to a solar still with air injection”, Journal of Cleaner Production, vol. 224, pp. 40–49, Jul. 2019. https://doi.org/10.1016/j.jclepro.2019.03.199
dc.relation/*ref*/S. Kiyaee; Y. Saboohi; A. Z. Moshfegh, “A new designed linear Fresnel lens solar concentrator based on spectral splitting for passive cooling of solar cells”, Energy Conversion and Management, vol. 230, p. 113782, Feb. 2021. https://doi.org/10.1016/j.enconman.2020.113782
dc.relation/*ref*/S. Kim; S. Kasashima; P. Sichanugrist; T. Kobayashi; T. Nakada; M. Konagai, “Development of thin-film solar cells using solar spectrum splitting technique”, Solar energy materials and solar cells, vol. 119, pp. 214–218, Dec. 2013. https://doi.org/10.1016/j.solmat.2013.07.011
dc.relation/*ref*/A. Mojiri; R. Taylor; E. Thomsen; G. Rosengarten, “Spectral beam splitting for efficient conversion of solar energy—a review”, Renewable and Sustainable Energy Reviews, vol. 28, pp. 654–663, Dec. 2013. https://doi.org/10.1016/j.rser.2013.08.026
dc.relation/*ref*/F. Kaule; W. Wang; S. Schoenfelder, “Modeling and testing the mechanical strength of solar cells”, Solar energy materials and solar cells, vol. 120, Part. A, pp. 441–447, Jan. 2014. https://doi.org/10.1016/j.solmat.2013.06.048
dc.relation/*ref*/M. Sander; S. Dietrich; M. Pander; M. Ebert; J. Bagdahn, “Systematic investigation of cracks in encapsulated solar cells after mechanical loading”, Solar Energy Materials and Solar Cells, vol. 111, pp. 82–89, Apr. 2013. https://doi.org/10.1016/j.solmat.2012.12.031
dc.relation/*ref*/S. Dietrich; M. Pander; M. Sander; S. H. Schulze; M. Ebert, “Mechanical and thermomechanical assessment of encapsulated solar cells by finite-element-simulation”, in: Reliability of photovoltaic cells, modules, components, and systems III, vol. 7773, p. 77730, 2010. https://doi.org/10.1117/12.860661
dc.relation/*ref*/S. Roy; M. S. Baruah; S. Sahu; B. B. Nayak, “Computational analysis on the thermal and mechanical properties of thin film solar cells”, Materials Today: Proceedings, vol. 44, Part. 1, pp. 1207-1213, 2021. https://doi.org/10.1016/j.matpr.2020.11.241
dc.relation/*ref*/G. F. Abdelal; A. Atef, “Thermal fatigue analysis of solar panel structure for micro-satellite applications”, International Journal of Mechanics and Materials in Design, vol. 4, no. 1, pp. 53–62, Jan. 2008. https://doi.org/10.1007/s10999-008-9057-3
dc.relation/*ref*/N. F. M. Roozenburg; N. G. Cross, “Models of the design process: integrating across the disciplines”, Design studies, vol. 12, no. 4, pp. 215–220, Oct. 1991. https://doi.org/10.1016/0142-694X(91)90034-T
dc.relation/*ref*/D. G. Ullman, The mechanical design process. New York. McGraw-Hill. 1992.
dc.relation/*ref*/J. Estrada; J. A. Camacho; M. T. Restrepo; C. M. Parra, “Parámetros antropométricos de la población laboral colombiana 1995”, Revista Facultad Nacional de Salud Pública, vol. 15, no. 2, pp. 112-139, Nov. 1998.
dc.relation/*ref*/M. M. Ansari; A. Chakrabarti, Effect of bullet shape and h/a ratio on ballistic impact behaviour of FRP composite plate: A numerical study. International Journal of Research in Engineering and Technology, vol. 4, no. 13, pp. 435-442, Dec. 2015.
dc.relation/*ref*/S. Bernal del Río, “Influencing the performance of a Building Integrated Low-Concentration Photovoltaic (BICPV) system by adapting an Anti-Reflective Coating (ARC) with a pyramidal texture”, (Ph.D. thesis), Engineering School, Universidad EAFIT, Medellín, 2021. http://hdl.handle.net/10784/29629
dc.relation/*ref*/S. N. K. Sagar; M. Sreekumar, “Miniaturized flexible flow pump using SMA actuator”, Procedia Engineering, vol. 64, pp. 896–906, 2013. https://doi.org/10.1016/j.proeng.2013.09.166
dc.relation/*ref*/E. J. Barbero, Introduction to composite materials design. CRC Press, 2017.
dc.relation/*ref*/M. S. Chowdhury et al., An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, vol. 27, p. 100431, Jan. 2020. https://doi.org/10.1016/j.esr.2019.100431
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.sourceTecnoLógicas; Vol. 25 No. 53 (2022); e2171en-US
dc.sourceTecnoLógicas; Vol. 25 Núm. 53 (2022); e2171es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectSolar Energyen-US
dc.subjectPhotovoltaic Surfacesen-US
dc.subjectCurved Solar Panelen-US
dc.subjectBuilding-Integrated Photovoltaics (BIPV)en-US
dc.subjectVehicle-Integrated Photovoltaics (VIPV)en-US
dc.subjectEnergía Solares-ES
dc.subjectSuperficies Fotovoltaicases-ES
dc.subjectPanel Solar Curvoes-ES
dc.subjectFotovoltaica Integrada en Edificios (BIPV)es-ES
dc.subjectFotovoltaica Integrada a Vehículos (VIPV)es-ES
dc.titleDesign, Analysis, and Modeling of Curved Photovoltaic Surfaces Using Composite Materialsen-US
dc.titleDiseño, análisis y modelamiento de superficies fotovoltaicas curvas usando materiales compuestoses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
revistatecnologicas_2171-MUB-VF.docx.pdf
Tamaño:
1.29 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
ojsitm_344270031009.epub
Tamaño:
1.75 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
ojsitm_344270031009.xml
Tamaño:
97.13 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2410.html
Tamaño:
142.47 KB
Formato:
Hypertext Markup Language