Iron Oxides as Catalysts of Fenton-Type Processes with Potential Application in Pollutant Removal Technologies

dc.creatorGarzón-Cucaita , Valentina
dc.creatorCarriazo, José G.
dc.date2022-11-22
dc.date.accessioned2025-10-01T23:52:50Z
dc.descriptionThe designing of new technologies for wastewater treatment is needed. These procedures should have greater efficiency and broad engineering application scope. Among these technologies, the advanced oxidation processes (AOP) have shown high efficiency and potential application in the degradation of hazardous pollutants. Fenton and Fenton-type reactions constitute the most widely used group of AOPs, due to their great oxidizing power and feasibility of application. The iron oxides are stable, non-toxic, and abundant; they have been extensively studied as catalysts for Fenton-type systems. The aim of this work is to show the state of the art on the application of iron oxides as catalysts in these systems. Methodologically, a systematic bibliographic review was carried out on the iron oxides used in Fenton-type processes, using the Scopus database with a search formula that included the appropriate descriptors and boolean operators. As a result, a wide variety of structures with different characteristics and catalytic performance were identified, classified, and analyzed. As conclusion, the most studied species like heterogeneous Fenton catalysts have been magnetite (Fe3O4), hematite (α-Fe2O3), goethite (α-FeOOH) and ferrihydrite (FeOOH). They show different levels of degradation of organic contaminants, depending on the type of substrate, pH, temperature, and concentration of H2O2. In addition, some modifications focused on improving the catalytic efficiency were described: the use of UV-Vis radiation, incorporation of metallic Fe (Fe0) or transition metals (Co, Cu and Mn), catalytic supports, and the control of particle morphology.en-US
dc.descriptionExiste la necesidad de diseñar nuevas tecnologías para el tratamiento de aguas residuales, con mayor eficiencia y alcance de aplicación ingenieril. Entre dichas tecnologías, los procesos avanzados de oxidación (AOP, por sus siglas en inglés) han demostrado alta eficiencia y potencial aplicación en la degradación de contaminantes peligrosos. Las reacciones Fenton y tipo Fenton constituyen el grupo de AOP de uso más extendido, debido a su gran poder oxidante y viabilidad de aplicación. Los óxidos de hierro, estables, no tóxicos y abundantes, han sido ampliamente estudiados como catalizadores de sistemas tipo Fenton. El objetivo del presente estudio fue mostrar el estado actual sobre los avances recientes en la aplicación de los óxidos de hierro como catalizadores en este tipo de sistemas. Metodológicamente, se realizó una revisión bibliográfica sistemática sobre óxidos de hierro empleados en procesos tipo Fenton, usando la base de datos Scopus con una fórmula de búsqueda que incluyó los descriptores y operadores booleanos apropiados. Como resultado, se identificó, clasificó y analizó una amplia variedad de estructuras con diferentes características y desempeño catalítico. En conclusión, las especies más estudiadas como catalizadores han sido magnetita (Fe3O4), hematita (α-Fe2O3), goethita (α-FeOOH) y ferrihidrita (FeOOH), mostrando diferentes niveles de degradación de contaminantes orgánicos, dependiendo del tipo de sustrato, pH, temperatura y concentración de H2O2. Además, se describieron algunas modificaciones enfocadas a mejorar su eficiencia catalítica: empleo de radiación UV-Vis, incorporación de Fe metálico (Fe0) o metales de transición (Co, Cu y Mn), soportes catalíticos y control de la morfología de partículas.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2393
dc.identifier10.22430/22565337.2393
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7842
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2393/2631
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2393/2635
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2393/2636
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2393/2646
dc.relation/*ref*/J. Wang and J. Tang, “Fe-based Fenton-like catalysts for water treatment: Catalytic mechanisms and applications,” J Mol Liq, vol. 332, p. 115755, Jun. 2021, https://doi.org/10.1016/j.molliq.2021.115755
dc.relation/*ref*/J. A. Torres-Luna, G. I. Giraldo-Gómez, N. R. Sanabria-González, and J. G. Carriazo, “Catalytic degradation of real-textile azo-dyes in aqueous solutions by using Cu–Co/halloysite,” Bulletin of Materials Science, vol. 42, no. 4, p. 137, Apr. 2019, https://doi.org/10.1007/s12034-019-1817-1
dc.relation/*ref*/S. K. Sharma, R. Sanghi, and A. Mudhoo, “Green Practices to Save Our Precious ‘Water Resource,’” in Advances in Water Treatment and Pollution Prevention, Dordrecht: Springer Netherlands, 2012, pp. 1–36. https://doi.org/10.1007/978-94-007-4204-8_1
dc.relation/*ref*/G. Crini and E. Lichtfouse, “Advantages and disadvantages of techniques used for wastewater treatment,” Environ Chem Lett, vol. 17, no. 1, pp. 145–155, Mar. 2019, https://doi.org/10.1007/s10311-018-0785-9
dc.relation/*ref*/R. Ameta, A. K. Chohadia, A. Jain, and P. B. Punjabi, “Fenton and Photo-Fenton Processes,” in Advanced Oxidation Processes for Waste Water Treatment, Elsevier, 2018, pp. 49–87. https://doi.org/10.1016/B978-0-12-810499-6.00003-6
dc.relation/*ref*/M. Coha, G. Farinelli, A. Tiraferri, M. Minella, and D. Vione, “Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs,” Chemical Engineering Journal, vol. 414, p. 128668, Jun. 2021, https://doi.org/10.1016/j.cej.2021.128668
dc.relation/*ref*/D. Ghime and P. Ghosh, “Advanced Oxidation Processes: A Powerful Treatment Option for the Removal of Recalcitrant Organic Compounds,” in Advanced Oxidation Processes - Applications, Trends, and Prospects, IntechOpen, 2020. https://doi.org/10.5772/intechopen.90192
dc.relation/*ref*/M. Faouzi et al., “Advanced oxidation processes for the treatment of wastes polluted with azoic dyes,” Electrochim Acta, vol. 52, no. 1, pp. 325–331, Oct. 2006, https://doi.org/10.1016/j.electacta.2006.05.011
dc.relation/*ref*/M. Sillanpää, M. C. Ncibi, and A. Matilainen, “Advanced oxidation processes for the removal of natural organic matter from drinking water sources: A comprehensive review,” J Environ Manage, vol. 208, pp. 56–76, Feb. 2018, https://doi.org/10.1016/j.jenvman.2017.12.009
dc.relation/*ref*/W. H. Glaze, J.-W. Kang, and D. H. Chapin, “The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation,” Ozone Sci Eng, vol. 9, no. 4, pp. 335–352, Sep. 1987, https://doi.org/10.1080/01919518708552148
dc.relation/*ref*/D. S. Babu, V. Srivastava, P. V. Nidheesh, and M. S. Kumar, “Detoxification of water and wastewater by advanced oxidation processes,” Science of The Total Environment, vol. 696, p. 133961, Dec. 2019, https://doi.org/10.1016/j.scitotenv.2019.133961
dc.relation/*ref*/H. Luo, Y. Zeng, D. He, and X. Pan, “Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review,” Chemical Engineering Journal, vol. 407, p. 127191, Mar. 2021, https://doi.org/10.1016/j.cej.2020.127191
dc.relation/*ref*/A. D. Bokare and W. Choi, “Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes,” J Hazard Mater, vol. 275, pp. 121–135, Jun. 2014, https://doi.org/10.1016/j.jhazmat.2014.04.054
dc.relation/*ref*/I. F. Macías-Quiroga, P. A. Henao-Aguirre, A. Marín-Flórez, S. M. Arredondo-López, and N. R. Sanabria-González, “Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends,” Environmental Science and Pollution Research, vol. 28, no. 19, pp. 23791–23811, May 2021, https://doi.org/10.1007/s11356-020-11333-7
dc.relation/*ref*/D. Kanakaraju, B. D. Glass, and M. Oelgemöller, “Advanced oxidation process-mediated removal of pharmaceuticals from water: A review,” J Environ Manage, vol. 219, pp. 189–207, Aug. 2018, https://doi.org/10.1016/j.jenvman.2018.04.103
dc.relation/*ref*/Y. Deng and R. Zhao, “Advanced Oxidation Processes (AOPs) in Wastewater Treatment,” Curr Pollut Rep, vol. 1, no. 3, pp. 167–176, Sep. 2015, https://doi.org/10.1007/s40726-015-0015-z
dc.relation/*ref*/A. Giwa et al., “Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review,” Process Safety and Environmental Protection, vol. 146, pp. 220–256, Feb. 2021, https://doi.org/10.1016/j.psep.2020.08.015
dc.relation/*ref*/G. P. Anipsitakis and D. D. Dionysiou, “Radical Generation by the Interaction of Transition Metals with Common Oxidants,” Environ Sci Technol, vol. 38, no. 13, pp. 3705–3712, Jul. 2004, https://doi.org/10.1021/es035121o
dc.relation/*ref*/S. Atalay and G. Ersöz, “Advanced Oxidation Processes for Removal of Dyes from Aqueous Media,” in Green Chemistry for Dyes Removal from Wastewater, Hoboken, NJ, USA: Wiley, 2015, pp. 83–117. https://doi.org/10.1002/9781118721001.ch3
dc.relation/*ref*/R. M. Cornell and U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurences and Use. Wiley, 2003. https://doi.org/10.1002/3527602097
dc.relation/*ref*/J. D. Navratil, “Wastewater Treatment Technology Based on Iron Oxides,” in Natural Microporous Materials in Environmental Technology, Dordrecht: Springer Netherlands, 1999, pp. 417–424. https://doi.org/10.1007/978-94-011-4499-5_31
dc.relation/*ref*/M. C. Pereira, L. C. A. Oliveira, and E. Murad, “Iron oxide catalysts: Fenton and Fentonlike reactions – a review,” Clay Miner, vol. 47, no. 3, pp. 285–302, Sep. 2012, https://doi.org/10.1180/claymin.2012.047.3.01
dc.relation/*ref*/Q. Q. Cai, L. Jothinathan, S. H. Deng, S. L. Ong, H. Y. Ng, and J. Y. Hu, “Fenton- and ozone-based AOP processes for industrial effluent treatment,” in Advanced Oxidation Processes for Effluent Treatment Plants, Elsevier, 2021, pp. 199–254. https://doi.org/10.1016/B978-0-12-821011-6.00011-6
dc.relation/*ref*/C. Lai et al., “Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review,” Science of The Total Environment, vol. 775, p. 145850, Jun. 2021, https://doi.org/10.1016/j.scitotenv.2021.145850
dc.relation/*ref*/A. N. Soon and B. H. Hameed, “Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process,” Desalination, vol. 269, no. 1–3, pp. 1–16, Mar. 2011, https://doi.org/10.1016/j.desal.2010.11.002
dc.relation/*ref*/Y. Zhu, R. Zhu, Y. Xi, J. Zhu, G. Zhu, and H. He, “Strategies for enhancing the heterogeneous Fenton catalytic reactivity: A review,” Appl Catal B, vol. 255, p. 117739, Oct. 2019, https://doi.org/10.1016/j.apcatb.2019.05.041
dc.relation/*ref*/A. Babuponnusami and K. Muthukumar, “A review on Fenton and improvements to the Fenton process for wastewater treatment,” J Environ Chem Eng, vol. 2, no. 1, pp. 557–572, Mar. 2014, https://doi.org/10.1016/j.jece.2013.10.011
dc.relation/*ref*/J. de Laat and H. Gallard, “Catalytic Decomposition of Hydrogen Peroxide by Fe(III) in Homogeneous Aqueous Solution: Mechanism and Kinetic Modeling,” Environ Sci Technol, vol. 33, no. 16, pp. 2726–2732, Aug. 1999, https://doi.org/10.1021/es981171v
dc.relation/*ref*/H. Gallard, J. de Laat, and B. Legube, “Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions,” Water Res, vol. 33, no. 13, pp. 2929–2936, Sep. 1999, https://doi.org/10.1016/S0043-1354(99)00007-X
dc.relation/*ref*/H. Gallard, J. de Laat, “Kinetic modelling of Fe(III)/H2O2 oxidation reactions in dilute aqueous solution using atrazine as a model organic compound,” Water Res, vol. 34, no. 12, pp. 3107–3116, Aug. 2000, https://doi.org/10.1016/S0043-1354(00)00074-9
dc.relation/*ref*/A. Tufail, W. E. Price, M. Mohseni, B. K. Pramanik, and F. I. Hai, “A critical review of advanced oxidation processes for emerging trace organic contaminant degradation: Mechanisms, factors, degradation products, and effluent toxicity,” Journal of Water Process Engineering, vol. 40, p. 101778, Apr. 2021, https://doi.org/10.1016/j.jwpe.2020.101778
dc.relation/*ref*/J. J. Pignatello, E. Oliveros, and A. MacKay, “Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry,” Crit Rev Environ Sci Technol, vol. 36, no. 1, pp. 1–84, Jan. 2006, https://doi.org/10.1080/10643380500326564
dc.relation/*ref*/S. Rahim Pouran, A. A. Abdul Raman, and W. M. A. Wan Daud, “Review on the application of modified iron oxides as heterogeneous catalysts in Fenton reactions,” J Clean Prod, vol. 64, pp. 24–35, Feb. 2014, https://doi.org/10.1016/j.jclepro.2013.09.013
dc.relation/*ref*/N. Thomas, D. D. Dionysiou, and S. C. Pillai, “Heterogeneous Fenton catalysts: A review of recent advances,” J Hazard Mater, vol. 404, part. B, p. 124082, Feb. 2021, https://doi.org/10.1016/j.jhazmat.2020.124082
dc.relation/*ref*/H. Sun, G. Xie, D. He, and L. Zhang, “Ascorbic acid promoted magnetite Fenton degradation of alachlor: Mechanistic insights and kinetic modeling,” Appl Catal B, vol. 267, p. 118383, Jun. 2020, https://doi.org/10.1016/j.apcatb.2019.118383
dc.relation/*ref*/L. Xu and J. Wang, “Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles,” Appl Catal B, vol. 123–124, pp. 117–126, Jul. 2012, https://doi.org/10.1016/j.apcatb.2012.04.028
dc.relation/*ref*/F. Velichkova, C. Julcour-Lebigue, B. Koumanova, and H. Delmas, “Heterogeneous Fenton oxidation of paracetamol using iron oxide (nano)particles,” J Environ Chem Eng, vol. 1, no. 4, pp. 1214–1222, Dec. 2013, https://doi.org/10.1016/j.jece.2013.09.011
dc.relation/*ref*/X. Wei, X. Xie, Y. Wang, and S. Yang, “Shape-Dependent Fenton-Like Catalytic Activity of Fe3O4 Nanoparticles,” Journal of Environmental Engineering, vol. 146, no. 3, Mar. 2020, https://doi.org/10.1061/(ASCE)EE.1943-7870.0001648
dc.relation/*ref*/X. Xue, K. Hanna, and N. Deng, “Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide,” J Hazard Mater, vol. 166, no. 1, pp. 407–414, Jul. 2009, https://doi.org/10.1016/j.jhazmat.2008.11.089
dc.relation/*ref*/K. Rusevova, F.-D. Kopinke, and A. Georgi, “Nano-sized magnetic iron oxides as catalysts for heterogeneous Fenton-like reactions—Influence of Fe(II)/Fe(III) ratio on catalytic performance,” J Hazard Mater, vol. 241–242, pp. 433–440, Nov. 2012, https://doi.org/10.1016/j.jhazmat.2012.09.068
dc.relation/*ref*/S. Zhang, X. Zhao, H. Niu, Y. Shi, Y. Cai, and G. Jiang, “Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compounds,” J Hazard Mater, vol. 167, no. 1–3, pp. 560–566, Aug. 2009, https://doi.org/10.1016/j.jhazmat.2009.01.024
dc.relation/*ref*/Z.-R. Lin, X.-H. Ma, L. Zhao, and Y.-H. Dong, “Kinetics and products of PCB28 degradation through a goethite-catalyzed Fenton-like reaction,” Chemosphere, vol. 101, pp. 15–20, Apr. 2014, https://doi.org/10.1016/j.chemosphere.2013.11.063
dc.relation/*ref*/Y. Wang, Y. Gao, L. Chen, and H. Zhang, “Goethite as an efficient heterogeneous Fenton catalyst for the degradation of methyl orange,” Catal Today, vol. 252, pp. 107–112, Sep. 2015, https://doi.org/10.1016/j.cattod.2015.01.012
dc.relation/*ref*/Y. Li and F.-S. Zhang, “Catalytic oxidation of Methyl Orange by an amorphous FeOOH catalyst developed from a high iron-containing fly ash,” Chemical Engineering Journal, vol. 158, no. 2, pp. 148–153, Apr. 2010, https://doi.org/10.1016/j.cej.2009.12.021
dc.relation/*ref*/H. Zhang, H. Fu, and D. Zhang, “Degradation of C.I. Acid Orange 7 by ultrasound enhanced heterogeneous Fenton-like process,” J Hazard Mater, vol. 172, no. 2–3, pp. 654–660, Dec. 2009, https://doi.org/10.1016/j.jhazmat.2009.07.047
dc.relation/*ref*/M.-C. Lu, J.-N. Chen, and H.-H. Huang, “Role of goethite dissolution in the oxidation of 2-chlorophenol with hydrogen peroxide,” Chemosphere, vol. 46, no. 1, pp. 131–136, Jan. 2002, https://doi.org/10.1016/S0045-6535(01)00076-5
dc.relation/*ref*/G. B. Ortiz de la Plata, O. M. Alfano, and A. E. Cassano, “Decomposition of 2-chlorophenol employing goethite as Fenton catalyst. I. Proposal of a feasible, combined reaction scheme of heterogeneous and homogeneous reactions,” Appl Catal B, vol. 95, no. 1–2, pp. 1–13, Mar. 2010, https://doi.org/10.1016/j.apcatb.2009.12.005
dc.relation/*ref*/R. Prucek, M. Hermanek, and R. Zbořil, “An effect of iron(III) oxides crystallinity on their catalytic efficiency and applicability in phenol degradation—A competition between homogeneous and heterogeneous catalysis,” Appl Catal A Gen, vol. 366, no. 2, pp. 325–332, Sep. 2009, https://doi.org/10.1016/j.apcata.2009.07.019
dc.relation/*ref*/J. Shi, Z. Ai, and L. Zhang, “Fe@Fe2O3 core-shell nanowires enhanced Fenton oxidation by accelerating the Fe(III)/Fe(II) cycles,” Water Res, vol. 59, pp. 145–153, Aug. 2014, https://doi.org/10.1016/j.watres.2014.04.015
dc.relation/*ref*/X. Huang, X. Hou, J. Zhao, and L. Zhang, “Hematite facet confined ferrous ions as high efficient Fenton catalysts to degrade organic contaminants by lowering H2O2 decomposition energetic span,” Appl Catal B, vol. 181, pp. 127–137, Feb. 2016, https://doi.org/10.1016/j.apcatb.2015.06.061
dc.relation/*ref*/J. He, X. Yang, B. Men, and D. Wang, “Interfacial mechanisms of heterogeneous Fenton reactions catalyzed by iron-based materials: A review,” Journal of Environmental Sciences, vol. 39, pp. 97–109, Jan. 2016, https://doi.org/10.1016/j.jes.2015.12.003
dc.relation/*ref*/L. Zhao, Z.-R. Lin, X. Ma, and Y.-H. Dong, “Catalytic activity of different iron oxides: Insight from pollutant degradation and hydroxyl radical formation in heterogeneous Fenton-like systems,” Chemical Engineering Journal, vol. 352, pp. 343–351, Nov. 2018, https://doi.org/10.1016/j.cej.2018.07.035
dc.relation/*ref*/W. P. Kwan and B. M. Voelker, “Rates of Hydroxyl Radical Generation and Organic Compound Oxidation in Mineral-Catalyzed Fenton-like Systems,” Environ Sci Technol, vol. 37, no. 6, pp. 1150–1158, Mar. 2003, https://doi.org/10.1021/es020874g
dc.relation/*ref*/G. S. Parkinson, “Iron oxide surfaces,” Surf Sci Rep, vol. 71, no. 1, pp. 272–365, Mar. 2016, https://doi.org/10.1016/j.surfrep.2016.02.001
dc.relation/*ref*/J. G. Carriazo Baños, V. E. Noval Lara, and C. Ochoa Puentes, “Magnetita (Fe3O4): Una estructura inorgánica con múltiples aplicaciones en catálisis heterogénea,” Revista Colombiana de Química, vol. 46, no. 1, p. 42, Jan. 2017, https://doi.org/10.15446/rev.colomb.quim.v46n1.62831
dc.relation/*ref*/F. C. C. Moura et al., “Efficient use of Fe metal as an electron transfer agent in a heterogeneous Fenton system based on Fe0/Fe3O4 composites,” Chemosphere, vol. 60, no. 8, pp. 1118–1123, Aug. 2005, https://doi.org/10.1016/j.chemosphere.2004.12.076
dc.relation/*ref*/J. Chun et al., “Magnetite/mesocellular carbon foam as a magnetically recoverable fenton catalyst for removal of phenol and arsenic,” Chemosphere, vol. 89, no. 10, pp. 1230–1237, Nov. 2012, https://doi.org/10.1016/j.chemosphere.2012.07.046
dc.relation/*ref*/S. Yang et al., “Degradation of Methylene Blue by Heterogeneous Fenton Reaction Using Titanomagnetite at Neutral pH Values: Process and Affecting Factors,” Ind Eng Chem Res, vol. 48, no. 22, pp. 9915–9921, Nov. 2009, https://doi.org/10.1021/ie900666b
dc.relation/*ref*/X. Huang, X. Hou, F. Song, J. Zhao, and L. Zhang, “Ascorbate Induced Facet Dependent Reductive Dissolution of Hematite Nanocrystals,” The Journal of Physical Chemistry C, vol. 121, no. 2, pp. 1113–1121, Jan. 2017, https://doi.org/10.1021/acs.jpcc.6b09281
dc.relation/*ref*/P. J. Vikesland, A. M. Heathcock, R. L. Rebodos, and K. E. Makus, “Particle Size and Aggregation Effects on Magnetite Reactivity toward Carbon Tetrachloride,” Environ Sci Technol, vol. 41, no. 15, pp. 5277–5283, Aug. 2007, https://doi.org/10.1021/es062082i
dc.relation/*ref*/H. Liu, T. Chen, and R. L. Frost, “An overview of the role of goethite surfaces in the environment,” Chemosphere, vol. 103, pp. 1–11, May 2014, https://doi.org/10.1016/j.chemosphere.2013.11.065
dc.relation/*ref*/J. J. Wu, M. Muruganandham, J. S. Yang, and S. S. Lin, “Oxidation of DMSO on goethite catalyst in the presence of H2O2 at neutral pH,” Catal Commun, vol. 7, no. 11, pp. 901–906, Nov. 2006, https://doi.org/10.1016/j.catcom.2006.03.015
dc.relation/*ref*/K. Lin, J. Ding, H. Wang, X. Huang, and J. Gan, “Goethite-mediated transformation of bisphenol A,” Chemosphere, vol. 89, no. 7, pp. 789–795, Oct. 2012, https://doi.org/10.1016/j.chemosphere.2012.04.053
dc.relation/*ref*/T. R. Gordon and A. L. Marsh, “Temperature Dependence of the Oxidation of 2-Chlorophenol by Hydrogen Peroxide in the Presence of Goethite,” Catal Letters, vol. 132, no. 3–4, pp. 349–354, Aug. 2009, https://doi.org/10.1007/s10562-009-0125-6
dc.relation/*ref*/C. Santhosh, A. Malathi, E. Dhaneshvar, A. Bhatnagar, A. N. Grace, and J. Madhavan, “Iron Oxide Nanomaterials for Water Purification,” in Nanoscale Materials in Water Purification, Elsevier, 2019, pp. 431–446. https://doi.org/10.1016/B978-0-12-813926-4.00022-7
dc.relation/*ref*/X. Hou, X. Huang, Z. Ai, J. Zhao, and L. Zhang, “Ascorbic acid/Fe@Fe2O3: A highly efficient combined Fenton reagent to remove organic contaminants,” J Hazard Mater, vol. 310, pp. 170–178, Jun. 2016, https://doi.org/10.1016/j.jhazmat.2016.01.020
dc.relation/*ref*/X. Wang, J. Wang, Z. Cui, S. Wang, and M. Cao, “Facet effect of α-Fe 2 O 3 crystals on photocatalytic performance in the photo-Fenton reaction,” RSC Adv, vol. 4, no. 65, p. 34387, Jul. 2014, https://doi.org/10.1039/C4RA03866E
dc.relation/*ref*/J. Y. T. Chan, S. Y. Ang, E. Y. Ye, M. Sullivan, J. Zhang, and M. Lin, “Heterogeneous photo-Fenton reaction on hematite (α-Fe 2 O 3 ){104}, {113} and {001} surface facets,” Physical Chemistry Chemical Physics, vol. 17, no. 38, pp. 25333–25341, Aug. 2015, https://doi.org/10.1039/C5CP03332B
dc.relation/*ref*/Y. Ma, S. Meng, M. Qin, H. Liu, and Y. Wei, “New insight on kinetics of catalytic decomposition of hydrogen peroxide on ferrihydrite: Based on the preparation procedures of ferrihydrite,” Journal of Physics and Chemistry of Solids, vol. 73, no. 1, pp. 30–34, Jan. 2012, https://doi.org/10.1016/j.jpcs.2011.09.015
dc.relation/*ref*/J. C. Barreiro, M. D. Capelato, L. Martin-Neto, and H. C. Bruun Hansen, “Oxidative decomposition of atrazine by a Fenton-like reaction in a H2O2/ferrihydrite system,” Water Res, vol. 41, no. 1, pp. 55–62, Jan. 2007, https://doi.org/10.1016/j.watres.2006.09.016
dc.relation/*ref*/R. Matta, K. Hanna, and S. Chiron, “Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals,” Science of The Total Environment, vol. 385, no. 1–3, pp. 242–251, Oct. 2007, https://doi.org/10.1016/j.scitotenv.2007.06.030
dc.relation/*ref*/K. Hanna, T. Kone, and G. Medjahdi, “Synthesis of the mixed oxides of iron and quartz and their catalytic activities for the Fenton-like oxidation,” Catal Commun, vol. 9, no. 5, pp. 955–959, Mar. 2008, https://doi.org/10.1016/j.catcom.2007.09.035
dc.relation/*ref*/X. Xue, K. Hanna, M. Abdelmoula, and N. Deng, “Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations,” Appl Catal B, vol. 89, no. 3–4, pp. 432–440, Jul. 2009, https://doi.org/10.1016/j.apcatb.2008.12.024
dc.relation/*ref*/H. Hassan and B. H. Hameed, “Decolorization of Acid Red 1 by heterogeneous Fenton-like reaction using Fe-ball clay catalyst,” in 2011 International Conference on Environment Science and Engineering, vol. 8, pp. 232–236, 2011, [Online]. Available: http://www.ipcbee.com/vol8/52-S20010.pdf
dc.relation/*ref*/C. Ruales-Lonfat et al., “Iron oxides semiconductors are efficients for solar water disinfection: A comparison with photo-Fenton processes at neutral pH,” Appl Catal B, vol. 166–167, pp. 497–508, May 2015, https://doi.org/10.1016/j.apcatb.2014.12.007
dc.relation/*ref*/H. Xiang, G. Ren, X. Yang, D. Xu, Z. Zhang, and X. Wang, “A low-cost solvent-free method to synthesize α-Fe2O3 nanoparticles with applications to degrade methyl orange in photo-fenton system,” Ecotoxicol Environ Saf, vol. 200, p. 110744, Sep. 2020, https://doi.org/10.1016/j.ecoenv.2020.110744
dc.relation/*ref*/X. Chen et al., “Ag nanoparticles/hematite mesocrystals superstructure composite: a facile synthesis and enhanced heterogeneous photo-Fenton activity,” Catal Sci Technol, vol. 6, no. 12, pp. 4184–4191, Jan. 2016, https://doi.org/10.1039/C6CY00080K
dc.relation/*ref*/M. Minella et al., “Photo-Fenton oxidation of phenol with magnetite as iron source,” Appl Catal B, vol. 154–155, pp. 102–109, Jul. 2014, https://doi.org/10.1016/j.apcatb.2014.02.006
dc.relation/*ref*/G. Zhang, Q. Wang, W. Zhang, T. Li, Y. Yuan, and P. Wang, “Effects of organic acids and initial solution pH on photocatalytic degradation of bisphenol A (BPA) in a photo-Fenton-like process using goethite (α-FeOOH),” Photochemical & Photobiological Sciences, vol. 15, no. 8, pp. 1046–1053, Jul. 2016, https://doi.org/10.1039/C6PP00051G
dc.relation/*ref*/Y. Zhang et al., “Highly dispersed titania-supported iron oxide catalysts for efficient heterogeneous photo-Fenton oxidation: Influencing factors, synergistic effects and mechanism insight,” J Colloid Interface Sci, vol. 587, pp. 467–478, Apr. 2021, https://doi.org/10.1016/j.jcis.2020.12.008
dc.relation/*ref*/X. Zhang et al., “Facile synthesis of mesoporous anatase/rutile/hematite triple heterojunctions for superior heterogeneous photo-Fenton catalysis,” Appl Catal B, vol. 263, p. 118335, Apr. 2020, https://doi.org/10.1016/j.apcatb.2019.118335
dc.relation/*ref*/R. C. C. Costa, F. C. C. Moura, J. D. Ardisson, J. D. Fabris, and R. M. Lago, “Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides,” Appl Catal B, vol. 83, no. 1–2, pp. 131–139, Sep. 2008, https://doi.org/10.1016/j.apcatb.2008.01.039
dc.relation/*ref*/R. C. C. Costa et al., “Novel active heterogeneous Fenton system based on Fe3−xMxO4 (Fe, Co, Mn, Ni): The role of M2+ species on the reactivity towards H2O2 reactions,” J Hazard Mater, vol. 129, no. 1–3, pp. 171–178, Feb. 2006, https://doi.org/10.1016/j.jhazmat.2005.08.028
dc.relation/*ref*/J. Xu et al., “Large scale preparation of Cu-doped α-FeOOH nanoflowers and their photo-Fenton-like catalytic degradation of diclofenac sodium,” Chemical Engineering Journal, vol. 291, pp. 174–183, May 2016, https://doi.org/10.1016/j.cej.2016.01.059
dc.relation/*ref*/I. R. Guimaraes, A. Giroto, L. C. A. Oliveira, M. C. Guerreiro, D. Q. Lima, and J. D. Fabris, “Synthesis and thermal treatment of cu-doped goethite: Oxidation of quinoline through heterogeneous fenton process,” Appl Catal B, vol. 91, no. 3–4, pp. 581–586, Sep. 2009, https://doi.org/10.1016/j.apcatb.2009.06.030
dc.relation/*ref*/T. D. Nguyen, N. H. Phan, M. H. Do, and K. T. Ngo, “Magnetic Fe2MO4 (M:Fe, Mn) activated carbons: Fabrication, characterization and heterogeneous Fenton oxidation of methyl orange,” J Hazard Mater, vol. 185, no. 2–3, pp. 653–661, Jan. 2011, https://doi.org/10.1016/j.jhazmat.2010.09.068
dc.relation/*ref*/N. A. Zubir, C. Yacou, J. Motuzas, X. Zhang, X. S. Zhao, and J. C. Diniz da Costa, “The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO–Fe 3 O 4,” Chemical Communications, vol. 51, no. 45, pp. 9291–9293, Apr. 2015, https://doi.org/10.1039/C5CC02292D
dc.relation/*ref*/Y. Liu, X. Zhang, J. Deng, and Y. Liu, “A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient fenton-like catalyst for degradation of sulfonamides,” Chemosphere, vol. 277, p. 130305, Aug. 2021, https://doi.org/10.1016/j.chemosphere.2021.130305
dc.relation/*ref*/R. Zhu et al., “CNTs/ferrihydrite as a highly efficient heterogeneous Fenton catalyst for the degradation of bisphenol A: The important role of CNTs in accelerating Fe(III)/Fe(II) cycling,” Appl Catal B, vol. 270, p. 118891, Aug. 2020, https://doi.org/10.1016/j.apcatb.2020.118891
dc.relation/*ref*/S. Bao et al., “Heterogeneous iron oxide nanoparticles anchored on carbon nanotubes for high-performance lithium-ion storage and fenton-like oxidation,” J Colloid Interface Sci, vol. 601, pp. 283–293, Nov. 2021, https://doi.org/10.1016/j.jcis.2021.05.137
dc.relation/*ref*/T. Wang, C.-C. Yang, K. Qin, C.-W. Chen, and C.-D. Dong, “Life time enhanced Fenton-like catalyst by dispersing iron oxides in activated carbon: Preparation and reactivation through carbothermal reaction,” J Hazard Mater, vol. 406, p. 124791, Mar. 2021, https://doi.org/10.1016/j.jhazmat.2020.124791
dc.relation/*ref*/Y. Gao et al., “Fe 3 O 4 Anisotropic Nanostructures in Hydrogels: Efficient Catalysts for the Rapid Removal of Organic Dyes from Wastewater,” ChemPhysChem, vol. 17, no. 13, pp. 1999–2007, Jul. 2016, https://doi.org/10.1002/cphc.201600117
dc.relation/*ref*/A. M. G. Domacena, C. L. E. Aquino, and M. D. L. Balela, “Photo-Fenton Degradation of Methyl Orange Using Hematite (α-Fe2O3) of Various Morphologies,” Mater Today Proc, vol. 22, part. 2, pp. 248–254, 2020, https://doi.org/10.1016/j.matpr.2019.08.095
dc.relation/*ref*/H. Liu, M. Tong, K. Zhu, H. Liu, and R. Chen, “Preparation and photo-fenton degradation activity of α-Fe2O3 nanorings obtained by adding H2PO4−, SO42−, and citric acid,” Chemical Engineering Journal, vol. 382, p. 123010, Feb. 2020, https://doi.org/10.1016/j.cej.2019.123010
dc.relation/*ref*/C. Xiao, J. Li, and G. Zhang, “Synthesis of stable burger-like α-Fe2O3 catalysts: Formation mechanism and excellent photo-Fenton catalytic performance,” J Clean Prod, vol. 180, pp. 550–559, Apr. 2018, https://doi.org/10.1016/j.jclepro.2018.01.127
dc.relation/*ref*/J. Wang and J. Tang, “Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification,” Chemosphere, vol. 276, p. 130177, Aug. 2021, https://doi.org/10.1016/j.chemosphere.2021.130177
dc.relation/*ref*/M. Tadic, D. Trpkov, L. Kopanja, S. Vojnovic, and M. Panjan, “Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties,” J Alloys Compd, vol. 792, pp. 599–609, Jul. 2019, https://doi.org/10.1016/j.jallcom.2019.03.414
dc.relation/*ref*/L. Qiao and M. T. Swihart, “Solution-phase synthesis of transition metal oxide nanocrystals: Morphologies, formulae, and mechanisms,” Adv Colloid Interface Sci, vol. 244, pp. 199–266, Jun. 2017, https://doi.org/10.1016/j.cis.2016.01.005
dc.relation/*ref*/J. W. Geus and A. J. van Dillen, “Preparation of Supported Catalysts by Deposition-Precipitation,” in Handbook of Heterogeneous Catalysis, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2008. https://doi.org/10.1002/9783527610044.hetcat0021
dc.relation/*ref*/L. C. Paredes-Quevedo, C. González-Caicedo, J. A. Torres-Luna, and J. G. Carriazo, “Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay,” Water Air Soil Pollut, vol. 232, no. 1, p. 4, Jan. 2021, https://doi.org/10.1007/s11270-020-04968-2
dc.relation/*ref*/S. Benkhaya, S. M’ rabet, and A. el Harfi, “A review on classifications, recent synthesis and applications of textile dyes,” Inorg Chem Commun, vol. 115, p. 107891, May 2020, https://doi.org/10.1016/j.inoche.2020.107891
dc.relation/*ref*/M. Sahoo, “Degradation and mineralization of organic contaminants by Fenton and photo-Fenton processes: Review of mechanisms and effects of organic and inorganic additives,” Res J Chem Environ, vol. 15, no. 2, pp. 96–112, Jun. 2011, [Online]. Available: https://www.researchgate.net/publication/279585793_Degradation_and_mineralization_of_organic_contaminants_by_Fenton_and_photo-Fenton_processes_Review_of_mechanisms_and_effects_of_organic_and_inorganic_additives
dc.relation/*ref*/A. Mohamed et al., “Rapid photocatalytic degradation of phenol from water using composite nanofibers under UV,” Environ Sci Eur, vol. 32, no. 1, p. 160, Dec. 2020, https://doi.org/10.1186/s12302-020-00436-0
dc.relation/*ref*/X. Tian et al., “Catalytic Degradation of Phenol and p-Nitrophenol Using Fe3O4/MWCNT Nanocomposites as Heterogeneous Fenton-Like Catalyst,” Water Air Soil Pollut, vol. 228, no. 8, p. 297, Jul. 2017, https://doi.org/10.1007/s11270-017-3485-3
dc.relation/*ref*/J. Zhang, X. Zhang, and Y. Wang, “Degradation of phenol by a heterogeneous photo-Fenton process using Fe/Cu/Al catalysts,” RSC Adv, vol. 6, no. 16, pp. 13168–13176, Jan. 2016, https://doi.org/10.1039/C5RA20897A
dc.relation/*ref*/J. Carriazo, E. Guélou, J. Barrault, J. M. Tatibouët, R. Molina, and S. Moreno, “Catalytic wet peroxide oxidation of phenol by pillared clays containing Al–Ce–Fe,” Water Res, vol. 39, no. 16, pp. 3891–3899, Oct. 2005, https://doi.org/10.1016/j.watres.2005.06.034
dc.relation/*ref*/G. Cheng, J. Lin, J. Lu, X. Zhao, Z. Cai, and J. Fu, “Advanced Treatment of Pesticide-Containing Wastewater Using Fenton Reagent Enhanced by Microwave Electrodeless Ultraviolet,” Biomed Res Int, vol. 2015, pp. 1–8, Aug. 2015, https://doi.org/10.1155/2015/205903
dc.relation/*ref*/L. Yu, X. Yang, Y. Ye, and D. Wang, “Efficient removal of atrazine in water with a Fe 3 O 4 /MWCNTs nanocomposite as a heterogeneous Fenton-like catalyst,” RSC Adv, vol. 5, no. 57, pp. 46059–46066, May. 2015, https://doi.org/10.1039/C5RA04249F
dc.relation/*ref*/M. Munoz, F. J. Mora, Z. M. de Pedro, S. Alvarez-Torrellas, J. A. Casas, and J. J. Rodriguez, “Application of CWPO to the treatment of pharmaceutical emerging pollutants in different water matrices with a ferromagnetic catalyst,” J Hazard Mater, vol. 331, pp. 45–54, Jun. 2017, https://doi.org/10.1016/j.jhazmat.2017.02.017
dc.relation/*ref*/N. Jaafarzadeh, B. Kakavandi, A. Takdastan, R. R. Kalantary, M. Azizi, and S. Jorfi, “Powder activated carbon/Fe 3 O 4 hybrid composite as a highly efficient heterogeneous catalyst for Fenton oxidation of tetracycline: degradation mechanism and kinetic,” RSC Adv, vol. 5, no. 103, pp. 84718–84728, Sep. 2015, https://doi.org/10.1039/C5RA17953J
dc.relation/*ref*/Y. Wang, J. Liu, D. Kang, C. Wu, and Y. Wu, “Removal of pharmaceuticals and personal care products from wastewater using algae-based technologies: a review,” Rev Environ Sci Biotechnol, vol. 16, no. 4, pp. 717–735, Dec. 2017, https://doi.org/10.1007/s11157-017-9446-x
dc.relation/*ref*/J. Tang and J. Wang, “Fe 3 O 4 -MWCNT Magnetic Nanocomposites as Efficient Fenton-Like Catalysts for Degradation of Sulfamethazine in Aqueous Solution,” ChemistrySelect, vol. 2, no. 33, pp. 10727–10735, Nov. 2017, https://doi.org/10.1002/slct.201702249
dc.relation/*ref*/S.-P. Sun, X. Zeng, and A. T. Lemley, “Nano-magnetite catalyzed heterogeneous Fenton-like degradation of emerging contaminants carbamazepine and ibuprofen in aqueous suspensions and montmorillonite clay slurries at neutral pH,” J Mol Catal A Chem, vol. 371, pp. 94–103, May 2013, https://doi.org/10.1016/j.molcata.2013.01.027
dc.relation/*ref*/
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 25 No. 55 (2022); e2393en-US
dc.sourceTecnoLógicas; Vol. 25 Núm. 55 (2022); e2393es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectHeterogeneous catalysten-US
dc.subjectiron oxideen-US
dc.subjectadvanced oxidation processen-US
dc.subjectFenton reactionen-US
dc.subjectpollutant removal technologyen-US
dc.subjectCatalizador heterogéneoes-ES
dc.subjectóxido de hierroes-ES
dc.subjectproceso avanzado de oxidaciónes-ES
dc.subjectreacción Fentones-ES
dc.subjecttecnología de remoción de contaminantees-ES
dc.titleIron Oxides as Catalysts of Fenton-Type Processes with Potential Application in Pollutant Removal Technologiesen-US
dc.titleÓxidos de hierro como catalizadores de procesos tipo Fenton con potencial aplicación en tecnologías de remoción de contaminanteses-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeReview Articleen-US
dc.typeArtículos de revisiónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
2393-MPU-VF.pdf
Tamaño:
957.35 KB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
344272383014.epub
Tamaño:
1.49 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
344272383014.xml
Tamaño:
268.61 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2646.html
Tamaño:
264.58 KB
Formato:
Hypertext Markup Language