Urban Wind Energy Assessment Using Machine Learning and Multi-criteria Analysis
| dc.creator | Garrido-Silva, Gianina | |
| dc.creator | Ramírez-Murillo, Harrynson | |
| dc.creator | Cajamarca-García, María Paula | |
| dc.creator | Torres-Pinzón, Carlos Andrés | |
| dc.date | 2025-06-30 | |
| dc.date.accessioned | 2025-10-01T23:53:15Z | |
| dc.description | The transition toward renewable energy sources in urban environments presents technical and strategic challenges due to the variability of available resources and the inherent constraints of built-up spaces. This study assessed the potential for wind energy generation in Bogotá, D.C., Colombia, applying data science techniques and machine learning models. Clustering analysis, the Analytic Hierarchy Process (AHP), and Weibull distribution modeling used historical meteorological data on wind speed and temperature. The unsupervised analysis identified three representative hourly wind patterns, while the Weibull distribution estimated an operational wind speed of 2.2 m/s. The AHP method facilitated the selection of wind turbines based on technical criteria such as cut-in speed, rated power, and blade number. Among the key results, the 300 X-300 turbine achieved a Capacity Factor (CF) of 25.43%, a Yield Ratio (Yr) of 0.1352 h, and a Performance Ratio (PR) of 43.49%. These indicators reveal that, despite the moderate wind potential during specific periods, the low energy density and high variability limit the technical feasibility of wind systems in the study area. It is concluded that integrating data analysis tools with multi-criteria decision-making methods provides a robust framework for assessing urban wind resources and establishes a solid foundation for the tailored design of sustainable energy solutions. | en-US |
| dc.description | La transición hacia fuentes de energía renovable en entornos urbanos representa un desafío técnico y estratégico, debido a la variabilidad de los recursos disponibles y a las restricciones propias de los espacios construidos. Esta investigación evaluó el potencial de generación de energía eólica en Bogotá D.C., Colombia, mediante la aplicación de técnicas de ciencia de datos y modelos de aprendizaje automático. Se empleó un análisis de clustering, el Proceso de Jerarquía Analítica (AHP, por sus siglas en inglés) y un análisis de distribución de Weibull, utilizando datos meteorológicos históricos de velocidad del viento y temperatura. Este análisis no supervisado permitió identificar tres patrones horarios representativos del comportamiento eólico, mientras que la distribución de Weibull estimó una velocidad de operación de 2.2 m/s. El método AHP facilitó la selección de turbinas eólicas con base en criterios técnicos como velocidad de arranque, potencia nominal y número de palas. Entre los resultados más relevantes, la turbina 300 X- 300 alcanzó un factor de capacidad de 25.43 %, una relación de producción (Yr) de 0.1352 h y un índice de desempeño del 43.49 %. Estos índices revelaron que, aunque existen periodos con potencial eólico moderado, la baja densidad energética y la alta variabilidad limitan la viabilidad técnica de estos sistemas en el área objeto de estudio. Se concluye que la integración de herramientas de análisis de datos con métodos de decisión multicriterio permite una evaluación robusta del recurso eólico urbano, y ofrece una base sólida para el diseño de soluciones energéticas sostenibles hechas a la medida. | es-ES |
| dc.format | application/pdf | |
| dc.format | text/xml | |
| dc.format | application/zip | |
| dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3262 | |
| dc.identifier | 10.22430/22565337.3262 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12622/7928 | |
| dc.language | eng | |
| dc.publisher | Instituto Tecnológico Metropolitano (ITM) | es-ES |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3262/3680 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3262/3771 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/3262/3772 | |
| dc.relation | /*ref*/D. Icaza, D. Borge-Diez, and S. Pulla Galindo, “Proposal of 100% renewable energy production for the City of Cuenca-Ecuador by 2050,” Renewable Energy, vol. 170, pp. 1324-1341, Jun. 2021. https://doi.org/10.1016/j.renene.2021.02.067 | |
| dc.relation | /*ref*/A. Murtaza Ershad, R. J. Brecha, and K. Hallinan, “Analysis of solar photovoltaic and wind power potential in Afghanistan,” Renewable Energy, vol. 85, pp. 445-453, Jan. 2016. https://doi.org/10.1016/j.renene.2015.06.067 | |
| dc.relation | /*ref*/M. Khalid Farooq, and S. Kumar, “An assessment of renewable energy potential for electricity generation in Pakistan,” Renewable and Sustainable Energy Reviews, vol. 20, pp. 240-254, Apr. 2013. https://doi.org/10.1016/j.rser.2012.09.042 | |
| dc.relation | /*ref*/F. Salazar-Caceres, H. Ramirez-Murillo, C. A. Torres-Pinzón, and M. P. Camargo-Martínez, “Performance estimation technique for solar-wind hybrid systems: A machine learning approach,” Alexandria Engineering Journal, vol. 87, pp. 175-185, Jan. 2024. https://doi.org/10.1016/j.aej.2023.12.029 | |
| dc.relation | /*ref*/K. Sunderland, T. Woolmington, J. Blackledge, and M. Conlon, “Small wind turbines in turbulent (urban) environments: A consideration of normal and Weibull distributions for power prediction,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 121, pp. 70-81, Oct. 2013. https://doi.org/10.1016/j.jweia.2013.08.001 | |
| dc.relation | /*ref*/J. A. Guarienti, A. Kaufmann Almeida, A. Menegati Neto, A. R. de Oliveira Ferreira, J. P. Ottonelli, and I. Kaufmann de Almeida, “Performance analysis of numerical methods for determining Weibull distribution parameters applied to wind speed in Mato Grosso do Sul, Brazil,” Sustainable Energy Technologies and Assessments, vol. 42, p. 100854, Dec. 2020. https://doi.org/10.1016/j.seta.2020.100854 | |
| dc.relation | /*ref*/A. Adnan Shoukat et al., “Blades optimization for maximum power output of vertical axis wind turbine,” International Journal of Renewable Energy Development, vol. 10, no. 3, pp. 585-595, Aug. 2021. https://doi.org/10.14710/ijred.2021.35530 | |
| dc.relation | /*ref*/K. Mrigua, A. Toumi, M. Zemamou, B. Ouhmmou, Y. Lahlou, and M. Aggour, “CFD Investigation of a new elliptical-bladed multistage Savonius rotors,” International Journal of Renewable Energy Development, vol. 9, no. 3, pp. 383-392, Oct. 2020. https://doi.org/10.14710/ijred.2020.30286 | |
| dc.relation | /*ref*/A. Eltayesh, F. Castellani, F. Natili, M. Burlando, and A. Khedr, “Aerodynamic upgrades of a Darrieus vertical axis small wind turbine,” Energy for Sustainable Development, vol. 73, pp. 126-143, Apr. 2023. https://doi.org/10.1016/j.esd.2023.01.018 | |
| dc.relation | /*ref*/H. A. Porto, C. A. Fortulan, and A. J. V. Porto, “Power performance of starting-improved and multibladed horizontal-axis small wind turbines,” Sustainable Energy Technologies and Assessments, vol. 53, no. Part A, p. 102341, Oct. 2022. https://doi.org/10.1016/j.seta.2022.102341 | |
| dc.relation | /*ref*/H. Ramirez-Murillo, F. Salazar-Caceres, M. P. Camargo-Martinez, A. A. Patiño-Forero, and F. J. Mendez-Casallas, “Energy performance clustering and data visualization for solar-wind hybrid energy systems,” in Applied Computer Sciences in Engineering, J. C. Figueroa-García, C. Franco, Y. Gutierrez, and G. Hernández-Pérez, Eds., Cham: Springer Nature Switzerland, 2022, pp. 77-89. https://doi.org/10.1007/978-3-031-20611-5_7 | |
| dc.relation | /*ref*/K. F. Sotiropoulou, A. P. Vavatsikos, and P. N. Botsaris, “A hybrid AHP-PROMETHEE II onshore wind farms multicriteria suitability analysis using kNN and SVM regression models in northeastern Greece,” Renewable Energy, vol. 221, p. 119795, Feb. 2024. https://doi.org/10.1016/j.renene.2023.119795 | |
| dc.relation | /*ref*/D. Singh, and B. Singh, “Investigating the impact of data normalization on classification performance,” Applied Soft Computing, vol. 97, no. Part B, p. 105524, Dec. 2020. https://doi.org/10.1016/j.asoc.2019.105524 | |
| dc.relation | /*ref*/J. C. Aririguzo, and E. B. Ekwe, “Weibull distribution analysis of wind energy prospect for Umudike, Nigeria for power generation,” Robotics and Computer-Integrated Manufacturing, vol. 55, no. Part B, pp. 160-163, Feb. 2019. https://doi.org/10.1016/j.rcim.2018.01.001 | |
| dc.relation | /*ref*/A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Heming, “K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data,” Information Sciences, vol. 622, pp. 178-210, Apr. 2023. https://doi.org/10.1016/j.ins.2022.11.139 | |
| dc.relation | /*ref*/A. Karna, and K. Gibert, “Automatic identification of the number of clusters in hierarchical clustering,” Neural Computing and Applications, vol. 34, no. 1, pp. 119-134, Jan. 2022. https://doi.org/10.1007/s00521-021-05873-3 | |
| dc.relation | /*ref*/A. Et-taleby, M. Boussetta, and M. Benslimane, “Faults detection for photovoltaic field based on k-means, elbow, and average silhouette techniques through the segmentation of a thermal image,” International Journal of Photoenergy, vol. 2020, pp. 1-7, Dec. 2020. https://doi.org/10.1155/2020/6617597 | |
| dc.relation | /*ref*/S. Farhan Khahro, K. Tabbassum, A. Mahmood Soomro, L. Dong, and X. Liao, “Evaluation of wind power production prospective and Weibull parameter estimation methods for Babaurband, Sindh Pakistan,” Energy Conversion and Management, vol. 78, pp. 956-967, Feb. 2014. https://doi.org/10.1016/j.enconman.2013.06.062 | |
| dc.relation | /*ref*/S. Marih, L. Ghomri, and B. Bekkouche, “Evaluation of the wind potential and optimal design of a wind farm in the Arzew Industrial Zone in Western Algeria,” International Journal of Renewable Energy Development, vol. 9, no. 2, pp. 177-187, Jul. 2020. https://doi.org/10.14710/ijred.9.2.177-187 | |
| dc.relation | /*ref*/M. P. Burgos Gutiérrez, S. Aldana Ávila, and D. J. Rodríguez Patarroyo, “Análisis del recurso energético eólico para la ciudad de Bogotá DC para los meses de diciembre y enero, Colombia,” Avances Investigación en Ingeniería, vol. 12, no. 1, Dec. 2015. https://doi.org/10.18041/1794-4953/avances.2.278 | |
| dc.relation | /*ref*/P. Kumar Chaurasiya, S. Ahmed, and V. Warudkar, “Study of different parameters estimation methods of Weibull distribution to determine wind power density using ground-based Doppler SODAR instrument,” Alexandria Engineering Journal, vol. 57, no. 4, pp. 2299-2311, Dec. 2018. https://doi.org/10.1016/j.aej.2017.08.008 | |
| dc.relation | /*ref*/B. Hasan Khan, and M. Mushir Riaz, “Techno-economic analysis and planning for the development of large-scale offshore wind farm in India,” International Journal of Renewable Energy Development, vol. 10, no. 2, pp. 257-268, May. 2021. https://doi.org/10.14710/ijred.2021.34029 | |
| dc.relation | /*ref*/J. M. El Hacen, R. Ihaddadene, N. Ihaddadene, C. E. B. Elhadji Sidi, M. EL Bah, and P. -O. Logerais, “Performance analysis of micro-amorphe silicon PV array under actual climatic conditions in Nouakchott, Mauritania,” in 2019 10th International Renewable Energy Congress (IREC), Sousse, Tunisia, 2019, pp. 1-6. https://ieeexplore.ieee.org/document/8754599 | |
| dc.relation | /*ref*/J. -Y. Wang, Z. Qian, H. Zareipour, and D. Wood, “Performance assessment of photovoltaic modules based on daily energy generation estimation,” Energy, vol. 165, no. Part B, pp. 1160–1172, Dec. 2018. https://doi.org/10.1016/j.energy.2018.10.047 | |
| dc.relation | /*ref*/M. R. Islam, R. Saidur, and N. A. Rahim, “Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function,” Energy, vol. 36, no. 2, pp. 985-992, Feb. 2011. https://doi.org/10.1016/j.energy.2010.12.011 | |
| dc.relation | /*ref*/S. H. Pishgar-Komleh, A. Keyhani, and P. Sefeedpari, “Wind speed and power density analysis based on Weibull and Rayleigh distributions: A case study in Firouzkooh county of Iran,” Renewable and Sustainable Energy Reviews, vol. 42, pp. 313-322, Feb. 2015. https://doi.org/10.1016/j.rser.2014.10.028 | |
| dc.relation | /*ref*/A. Akim Salami, S. Ouedraogo, K. Mawugno Kodjoa, and A. S. Akoda Ajavon, “Influence of the random data sampling in estimation of wind speed resource: Case study,” Int. J. Renew. Energy Dev., vol. 11, no. 1, pp. 133-143, Feb. 2022. https://doi.org/10.14710/ijred.2022.38511 | |
| dc.relation | /*ref*/P. Das et al., “Assessment of Barriers to Wind Energy Development Using Analytic Hierarchy Process,” Sustainability, vol. 15, no. 22, p. 15774, Nov. 2023. https://doi.org/10.3390/su152215774 | |
| dc.relation | /*ref*/J. Arán Carrión, A. Espín Estrella, F. Aznar Dols, M. Zamorano Toro, M. Rodríguez, and A. Ramos Ridao, “Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants,” Renew. Sustain. Energy Rev., vol. 12, no. 9, pp. 2358–2380, Dec. 2008. https://doi.org/10.1016/j.rser.2007.06.011 | |
| dc.relation | /*ref*/B. G. Guerrero Hoyos, F. de J. Vélez Macías, and D. E. Morales Quintero, “Energía eólica y territorio: sistemas de información geográfica y métodos de decisión multicriterio en La Guajira (Colombia),” Ambiente y Desarrollo, vol. 23, no. 44, Feb. 2019. https://revistas.javeriana.edu.co/index.php/ambienteydesarrollo/article/view/24688 | |
| dc.relation | /*ref*/S. Carreno-Madinabeitia, G. Ibarra-Berastegi, J. Sáenz, and A. Ulazia, “Long-term changes in offshore wind power density and wind turbine capacity factor in the Iberian Peninsula (1900–2010),” Energy, vol. 226, p. 120364, Jul. 2021. https://doi.org/10.1016/j.energy.2021.120364 | |
| dc.relation | /*ref*/ | |
| dc.rights | Derechos de autor 2025 TecnoLógicas | es-ES |
| dc.rights | https://creativecommons.org/licenses/by-nc-sa/4.0 | es-ES |
| dc.source | TecnoLógicas; Vol. 28 No. 63 (2025); e3262 | en-US |
| dc.source | TecnoLógicas; Vol. 28 Núm. 63 (2025); e3262 | es-ES |
| dc.source | 2256-5337 | |
| dc.source | 0123-7799 | |
| dc.subject | clustering analysis | en-US |
| dc.subject | machine learning | en-US |
| dc.subject | wind energy | en-US |
| dc.subject | data preprocessing | en-US |
| dc.subject | system performance | en-US |
| dc.subject | hierarchical systems | en-US |
| dc.subject | análisis de clustering | es-ES |
| dc.subject | aprendizaje automático | es-ES |
| dc.subject | energía eólica | es-ES |
| dc.subject | preprocesamiento de datos | es-ES |
| dc.subject | rendimiento del sistema | es-ES |
| dc.subject | sistemas jerárquicos | es-ES |
| dc.title | Urban Wind Energy Assessment Using Machine Learning and Multi-criteria Analysis | en-US |
| dc.title | Evaluación del potencial eólico urbano mediante aprendizaje automático y análisis multicriterio | es-ES |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |
| dc.type | Research Papers | en-US |
| dc.type | Artículos de investigación | es-ES |