Method for determining uncertainty and error in the process of ophthalmic lens calibration
| dc.creator | Salgar-Marín , Alejandro | |
| dc.creator | Vargas , Javier Alberto | |
| dc.creator | Ramírez-Barrera, Andrés Felipe | |
| dc.date | 2021-11-30 | |
| dc.date.accessioned | 2025-10-01T23:52:43Z | |
| dc.description | In the present investigation, a scientific procedure was developed, and a mathematical model was proposed, with the objective of determining, under standard conditions, the uncertainty, and the measurement of dioptric power in ophthalmic lenses. The methodology of the scientific procedure is based on the fundamentals of geometric optics, this process guarantees and establishes a standardized uncertainty measure in repeatable and reproducible processes. The methodology is complemented with a proposed mathematical model based on the guide for the expression of uncertainty in measurement - GUM. This model can be applied to lenses used for calibrating eye care equipment (such as lensometers, which are used to diagnose myopia and farsightedness) by evaluating the lenses without having direct contact with patients. When the proposed mathematical model was applied, its experimental result was a maximum expanded uncertainty of ± 0.0079 diopters in a 0.5-diopter lens. This is optimal compared to the result of other authors this article, who reported a maximum expanded uncertainty of ± 0.0086 diopters. In conclusion, the application of this scientific procedure provides manufacturers and users of this type of lenses with a reliable measurement thanks to a calibration process based on geometrical optics and centered on patient safety. | en-US |
| dc.description | En la presente investigación se desarrolló un procedimiento científico, y se propuso un modelo matemático, con el objetivo de determinar, bajo condiciones estándar, la incertidumbre y la medida de potencia dióptrica en lentes oftalmológicos. La metodología del procedimiento científico está basada en los fundamentos de la óptica geométrica, este proceso garantiza y establece una medida de incertidumbre estandarizada en procesos repetibles y reproducibles. La metodología se complementa con una propuesta de modelo matemático basado en la guía para la expresión de la incertidumbre en la medida - GUM. Este modelo se puede aplicar a los lentes que se utilizan para la calibración de equipos de salud visual, como los lensómetros, los cuales se emplean para el diagnóstico de la miopía e hipermetropía por medio de la evaluación de los lentes sin tener contacto directo con los pacientes. Al aplicar el modelo matemático propuesto, y de acuerdo con los datos experimentales, se obtuvieron resultados óptimos en su incertidumbre máxima expandida de aproximadamente 0,0079 dioptrías en una lente de 0,5 dioptrías, comparados con el reporte realizado por los autores, dado que su trabajo reporta una incertidumbre máxima expandida cercana 0,0086 dioptrías, obteniendo como conclusión que la aplicación de este procedimiento científico permite a los fabricantes, y a los usuarios de este tipo de lentes, una confiabilidad en sus mediciones por medio de un proceso de calibración basado en la óptica geométrica en torno a la seguridad del paciente. | es-ES |
| dc.format | application/pdf | |
| dc.format | application/zip | |
| dc.format | text/xml | |
| dc.format | text/html | |
| dc.identifier | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1910 | |
| dc.identifier | 10.22430/22565337.1910 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12622/7788 | |
| dc.language | eng | |
| dc.publisher | Instituto Tecnológico Metropolitano (ITM) | es-ES |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1910/2187 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1910/2196 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1910/2197 | |
| dc.relation | https://revistas.itm.edu.co/index.php/tecnologicas/article/view/1910/2200 | |
| dc.relation | /*ref*/O. Tobón; V. Rodríguez, “Desarrollo y estandarización de métodos de calibración para equipos utilizados en salud visual (Queratómetros, Lensómetros y Tonómetros), implementados en el Hospital Universitario de San Vicente Fundación”, RIB, vol. 11, no. 22, pp. 21-28, Oct. 2017. https://doi.org/10.24050/19099762.n22.2017.1179 | |
| dc.relation | /*ref*/Ministerio De Salud Y Protección Social, “Resolución Número 3100 De 2019”. 2019. http://suin-juriscol.gov.co/viewDocument.asp?ruta=Resolucion/30039964 | |
| dc.relation | /*ref*/A. F. Ramirez Barrera; J. F. Martínez Gómez; E. Hidalgo Vásquez, “Modelo de gestión para la aplicación del control metrológico legal y la evaluación de la conformidad en equipos biomédicos”, RIB, vol. 11, no. 21, pp. 73-80, Jun. 2017. https://doi.org/10.24050/19099762.n21.2017.1175 | |
| dc.relation | /*ref*/Joint Committee for Guides in Metrology, “JCGM 100: Evaluation of measurement data – Guide to the expression of uncertainty in measurement”, 2008. https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 | |
| dc.relation | /*ref*/M. R. de Paiva; O. Pohlmann-Filho; A. Soratto, “Prospection for metrological control in medical scales and sphygmomanometers in the state of Santa Catarina – Brazil”, J. Phys.: Conf. Ser, vol. 575, no. 1, pp. 24-27. Nov. 2013. https://iopscience.iop.org/article/10.1088/1742-6596/575/1/012047 | |
| dc.relation | /*ref*/A. F. Ramírez-Barrera; E. Delgado-Trejos; V. Ramírez-Gómez, “Uncertainty estimation in the sphygmomanometers calibration according to OIML R16-1 from a legal metrology perspective”, IyU, vol. 25, p. 25, Oct. 2021. https://doi.org/10.11144/javeriana.iued25.uesc | |
| dc.relation | /*ref*/A. Badnjević; L. Gurbeta; D. Bošković; Z. Džemić, “Medical devices in legal metrology”, En 4th Mediterr. Conf. Embed. Comput. MECO, Budva, 2015, pp. 365–367. https://doi.org/10.1109/MECO.2015.7181945 | |
| dc.relation | /*ref*/J. J. Cárdenas-Monsalve; A. F. Ramírez-Barrera; E. Delgado-Trejos, “Evaluación y aplicación de la incertidumbre de medición en la determinación de las emisiones de fuentes fijas: una revisión”, TecnoLógicas, vol. 21, no. 42, pp. 231–244, May. 2018. https://doi.org/10.22430/22565337.790 | |
| dc.relation | /*ref*/J. Zhang; W. Liu; M. Gao; X. Ding, “Metrological calibration of ophthalmometers”, En8th Int. Conf. Biomed. Eng. Informatics, BMEI, Shenyang, 2015, pp. 360–365. https://doi.org/10.1109/BMEI.2015.7401530 | |
| dc.relation | /*ref*/N. E. Norrby et al., “Accuracy in determining intraocular lens dioptric power assessed by interlaboratory tests.”, J. Cataract Refract. Surg., vol. 22, no. 7, pp. 983–993, Sep. 1996. https://doi.org/10.1016/s0886-3350(96)80204-5 | |
| dc.relation | /*ref*/W. Yang et al., “Research on focal length measurement scheme of self-collimating optical instrument based on double grating”, Sensors, vol. 20, no. 9, May. 2020. https://doi.org/10.3390/s20092718 | |
| dc.relation | /*ref*/R. K. Choudhary; S. M. Hazarika; R. S. Sirohi, “Talbot interferometry for focal length measurement using linear and circular gratings”, Springer Proc. Phys., vol. 194, pp. 639–647, Sep. 2017. https://doi.org/10.1007/978-981-10-3908-9_80 | |
| dc.relation | /*ref*/J. A. Sousa; A. M. Reynolds; Á. S. Ribeiro, “A comparison in the evaluation of measurement uncertainty in analytical chemistry testing between the use of quality control data and a regression analysis”, Accredit. Qual. Assur., vol. 17, no. 2, pp. 207–214, Jan. 2012. https://doi.org/10.1007/s00769-011-0874-y | |
| dc.relation | /*ref*/Y. Nakano; K. Murata, “Talbot interferometry for measuring the focal length of a lens”, Appl. Opt., vol. 24, no. 19, pp. 3162-3166, Oct. 1985. https://doi.org/10.1364/AO.24.003162 | |
| dc.relation | /*ref*/P. Singh; M. S. Faridi; C. Shakher; R. S. Sirohi, “Measurement of focal length with phase-shifting Talbot interferometry”, Appl. Opt., vol. 44, no. 9, pp. 1572–1576, Mar. 2005. https://doi.org/10.1364/AO.44.001572 | |
| dc.relation | /*ref*/16] L. M. Bernardo; O. D. D. Soares, “Evaluation of the focal distance of a lens by Talbot interferometry”, Appl. Opt., vol. 27, no. 2, pp. 296-301, Jan. 1988. https://doi.org/10.1364/AO.27.000296 | |
| dc.relation | /*ref*/K. V. Sriram; M. P. Kothiyal; R. S. Sirohi, “Direct determination of focal length by using Talbot interferometry”, Appl. Opt., vol. 31, no. 28, pp. 5984-5987, Oct. 1992. https://doi.org/10.1364/AO.31.005984 | |
| dc.relation | /*ref*/G. Yang; L. Miao; X. Zhang; C. Sun; Y. Qiao. “High-accuracy measurement of the focal length and distortion of optical systems based on interferometry”, Appl Opt., vol. 57, no. 18, pp. 5217-5223, Jun. 2018. https://doi.org/10.1364/AO.57.005217 | |
| dc.relation | /*ref*/I. Glatt; O. Kafri, “Determination of the focal length of nonparaxial lenses by moire deflectometry”, Appl. Opt., vol. 26, no. 13, pp. 2507-2508, Jul. 1987. https://doi.org/10.1364/AO.26.002507 | |
| dc.relation | /*ref*/S. Trivedi; J. Dhanotia; S. Prakash, “Measurement of focal length using phase shifted moiré deflectometry”, Opt. Lasers Eng., vol. 51, no. 6, pp. 776–782, Jun. 2013. https://doi.org/10.1016/j.optlaseng.2013.01.018 | |
| dc.relation | /*ref*/E. Keren; K. M. Kreske; O. Kafri, “Universal method for determining the focal length of optical systems by moire deflectometry”, Appl. Opt., vol. 27, no. 8, pp. 1383-1385, Apr. 1988. https://doi.org/10.1364/AO.27.001383 | |
| dc.relation | /*ref*/S. De Nicola; P. Ferraro; A. Finizio; G. Pierattini, “Reflective grating interferometer for measuring the focal length of a lens by digital moiré effect”, Opt. Commun., vol. 132, no. 5–6, pp. 432–436, Dec. 1996. https://doi.org/10.1016/0030-4018(96)00391-4 | |
| dc.relation | /*ref*/Y. P. Kumar; S. Chatterjee, “Technique for the focal-length measurement of positive lenses using Fizeau interferometry”, Appl. Opt., vol. 48, no. 4, pp. 730–736, Jan. 2009. https://doi.org/10.1364/AO.48.000730 | |
| dc.relation | /*ref*/L. Angel; M. Tebaldi; R. Henao, “Phase stepping in Lau interferometry”, Opt. Commun., vol. 164, no. 4-6, pp. 247–255, Jun. 1999. https://doi.org/10.1016/S0030-4018(99)00172-8 | |
| dc.relation | /*ref*/M. Thakur; C. Shakher, “Evaluation of the focal distance of lenses by white-light Lau phase interferometry”, Appl. Opt., vol. 41, no. 10, pp. 1841-1845, Apr. 2002. https://doi.org/10.1364/AO.41.001841 | |
| dc.relation | /*ref*/M. de Angelis; S. De Nicola; P. Ferraro; A. Finizio; G. Pierattini, “A new approach to high accuracy measurement of the focal lengths of lenses using a digital Fourier transform”, Opt. Commun., vol. 136, no. 5–6, pp. 370–374, Apr. 1997. https://doi.org/10.1016/S0030-4018(96)00730-4 | |
| dc.relation | /*ref*/L. Chen; J. Hong; Y. Qiao; X. Zheng; X. Sun, “Theoretical analysis of collimators on the geometrical calibration of wide field-of-view radiometer”, Optik, vol. 121, no. 3, pp. 302–305, Feb. 2010. https://doi.org/10.1016/j.ijleo.2008.02.028 | |
| dc.relation | /*ref*/S. De Nicola; P. Ferraro; A. Finizio; G. Pierattini, “Reflective grating interferometer for measuring the focal length of a lens by digital moire effect”, Opt. Commun., vol. 132, no. 5–6, pp. 432–436, 1996. https://doi.org/10.1016/0030-4018(96)00391-4 | |
| dc.relation | /*ref*/D. Fantanas; A. Brunton; S. J. Henley; R. A. Dorey, “Investigation of the mechanism for current induced network failure for spray deposited silver nanowires”, Nanotechnology, vol. 29, no. 46, p. 465705. Sep. 2018. https://doi.org/10.1088/1361-6528/aadeda | |
| dc.relation | /*ref*/E. H. K. Stelzer; S. Grill, “The uncertainty principle applied to estimate focal spot dimensions”, Opt. Commun., vol. 132, no. 1–6, pp. 51-56, Jan. 2000. https://doi.org/10.1016/S0030-4018(99)00644-6 | |
| dc.relation | /*ref*/M. Dashtdar; S. Ali Hosseini-Saber, “Focal length measurement based on Fresnel diffraction from a phase plate”, Appl. Opt., vol. 55, no. 26, p. 7434-7437, Sep. 2016. https://doi.org/10.1364/AO.55.007434 | |
| dc.relation | /*ref*/M. Azpurua; C. Tremola; E. J. Paez, “Comparison of the GUM and Monte Carlo Methods for the Uncertainty Estimation In Electromagnetic Compatibility Testing”, Prog. Electromagn. Res. B, vol. 34, pp. 125-144, 2011. http://www.jpier.org/PIERB/pier.php?paper=11081804 | |
| dc.relation | /*ref*/O. Sima; M. C. Lépy, “Application of GUM Supplement 1 to uncertainty of Monte Carlo computed efficiency in gamma-ray spectrometry”, J. apradiso., vol. 109, pp. 493-499, Mar. 2016. https://doi.org/10.1016/j.apradiso.2015.11.097 | |
| dc.relation | /*ref*/Centro Español de Metrología, “Procedimiento DI-011 para la calibración de flexómetros”, 2021. | |
| dc.rights | Derechos de autor 2021 TecnoLógicas | es-ES |
| dc.source | TecnoLógicas; Vol. 24 No. 52 (2021); e1910 | en-US |
| dc.source | TecnoLógicas; Vol. 24 Núm. 52 (2021); e1910 | es-ES |
| dc.source | 2256-5337 | |
| dc.source | 0123-7799 | |
| dc.subject | Optical metrology | en-US |
| dc.subject | Calibration function | en-US |
| dc.subject | Lens power | en-US |
| dc.subject | Focal length | en-US |
| dc.subject | Measurement uncertainty | en-US |
| dc.subject | Metrología óptica | es-ES |
| dc.subject | Función de Calibración | es-ES |
| dc.subject | Potencia de la lente | es-ES |
| dc.subject | Distancia focal | es-ES |
| dc.subject | incertidumbre de medición | es-ES |
| dc.title | Method for determining uncertainty and error in the process of ophthalmic lens calibration | en-US |
| dc.title | Método para la determinación de la incertidumbre y el error en el proceso de calibración de lentes oftálmicas | es-ES |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion | |
| dc.type | Research Papers | en-US |
| dc.type | Artículos de investigación | es-ES |
Archivos
Bloque original
1 - 4 de 4
Cargando...
- Nombre:
- revistatecnologicas_1910-MPUB-VF.docx.pdf
- Tamaño:
- 793.68 KB
- Formato:
- Adobe Portable Document Format
Cargando...
- Nombre:
- ojsitm_344268257005.xml
- Tamaño:
- 101.04 KB
- Formato:
- Extensible Markup Language