Sizing and Sensitivity Analysis of a Stand-alone Microgrid Using HOMER Pro

dc.creatorGarcía-García, Jersson
dc.creatorOsma-Pinto, German
dc.date2023-03-22
dc.date.accessioned2025-10-01T23:52:51Z
dc.descriptionIn recent years, the implementation and study of microgrids (MG) has increased. Their sizing depends on the input data (e.g., demand, microclimate, costs, and constraints), so that the variation of one or more of these can modify the optimal solution of the MG and its expected operation. Such variation occurs due to the economic, technological, or climatic context, so a sensitivity analysis was proposed to characterize its impact. In order to contribute to the application of sensitivity analysis in MG projects, the objective of this work was to study the impact of seven sensitivity variables (solar irradiation, wind speed, ambient temperature, minimum state of charge of the battery bank, fuel price, discount rate and inflation rate) on the sizing and economic and operational indicators of an isolated MG for residential users in a rural municipality of Colombia. The analysis was carried out using the HOMER Pro tool, and the main indicators analyzed were net present cost, energy cost, capital cost, operating cost and renewable fraction. The results allowed identifying that the most influential variables for the case study are fuel price, inflation rate, discount rate and solar irradiation; likewise, it appreciated the usefulness of HOMER Pro for this type of analysis and the convenience of the graphic representation to study the impact of the sensitivity variables. In addition, the variation of the input data influences the feasibility of results, as, for example, the net present cost decreases with increasing fuel price, ambient temperature, or inflation rate, while it increases with decreasing minimum state of charge, solar irradiance, or discount rate.en-US
dc.descriptionEn años recientes, ha incrementado la implementación y el estudio de microrredes (MR). Su dimensionamiento depende de los datos de entrada (ej., demanda, microclima, costos y restricciones), por lo que la variación de uno o más de estos pueden modificar la solución óptima de la MR y su operación esperada. Tal variación se presenta debido al contexto económico, tecnológico o climático, por lo que, se propuso hacer un análisis de sensibilidad que caracterice su impacto. Con el fin de aportar en la aplicación del análisis de sensibilidad en proyectos de MR, el objetivo de este trabajo consistió en estudiar el impacto de siete variables de sensibilidad (irradiación solar, velocidad del viento, temperatura ambiente, estado de carga mínimo del banco de baterías, precio del combustible, tasa de descuento y tasa de inflación) sobre el dimensionamiento e indicadores económicos y operativos de una MR aislada para usuarios residenciales en un municipio rural de Colombia. El análisis se realizó a partir del uso de la herramienta HOMER Pro, siendo los principales indicadores analizados: costo presente neto, costo de energía, costo de capital, costo de operación y fracción renovable. Los resultados permitieron identificar que las variables más influyentes para el caso de estudio son: precio del combustible, tasa de inflación, tasa de descuento e irradiación solar; asimismo, apreció la utilidad de HOMER Pro para este tipo de análisis y la conveniencia de la representación gráfica para estudiar el impacto de las variables de sensibilidad. En conclusión, la variación de los datos de entrada influye en la factibilidad de resultados, como por ejemplo, el costo presente neto disminuye con el aumento del precio del combustible, la temperatura ambiente o la tasa de inflación, mientras que aumenta con la reducción del estado de carga mínimo, la irradiación solar o la tasa de descuento.es-ES
dc.formatapplication/pdf
dc.formatapplication/zip
dc.formattext/xml
dc.formattext/html
dc.identifierhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565
dc.identifier10.22430/22565337.2565
dc.identifier.urihttps://hdl.handle.net/20.500.12622/7857
dc.languagespa
dc.publisherInstituto Tecnológico Metropolitano (ITM)es-ES
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2792
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2809
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2810
dc.relationhttps://revistas.itm.edu.co/index.php/tecnologicas/article/view/2565/2811
dc.relation/*ref*/M. N. Alam, S. Chakrabarti, and A. Ghosh, “Networked Microgrids: State-of-the-Art and Future Perspectives,” IEEE Trans Industr Inform, vol. 15, no. 3, pp. 1238–1250, Mar. 2019, https://doi.org/10.1109/TII.2018.2881540
dc.relation/*ref*/M. Sandelic, S. Peyghami, A. Sangwongwanich, and F. Blaabjerg, “Reliability aspects in microgrid design and planning: Status and power electronics-induced challenges,” Renewable and Sustainable Energy Reviews, vol. 159, p. 112127, May. 2022, https://doi.org/10.1016/j.rser.2022.112127
dc.relation/*ref*/M. Debouza, A. Al-Durra, T. H. M. EL-Fouly, and H. H. Zeineldin, “Survey on microgrids with flexible boundaries: Strategies, applications, and future trends,” Electric Power Systems Research, vol. 205, p. 107765, Apr. 2022, https://doi.org/10.1016/j.epsr.2021.107765
dc.relation/*ref*/V. Lavanya and N. S. Kumar, “A Review: Control Strategies for Power Quality Improvement in Microgrid,” International Journal of Renewable Energy Research, vol. 8, no. 1, pp. 1–16, Mar. 2018, https://doi.org/10.20508/ijrer.v8i1.6643.g7290
dc.relation/*ref*/K. M. Krishna, “Optimization analysis of Microgrid using HOMER - A case study,” in 2011 Annual IEEE India Conference, Dec. 2011, pp. 1–5. https://doi.org/10.1109/INDCON.2011.6139566
dc.relation/*ref*/S. Fazal, E. Haque, M. Taufiqul, and A. Gargoom, “Grid integration impacts and control strategies for renewable based microgrid,” Sustainable Energy Technologies and Assessments, vol. 56, p. 103069, Mar. 2023, https://doi.org/10.1016/j.seta.2023.103069
dc.relation/*ref*/J. Lian, Y. Zhang, C. Ma, Y. Yang, and E. Chaima, “A review on recent sizing methodologies of hybrid renewable energy systems,” Energy Convers Manag, vol. 199, p. 112027, Nov. 2019, https://doi.org/10.1016/j.enconman.2019.112027
dc.relation/*ref*/R. Hidalgo-Leon et al., “Feasibility Study for Off-Grid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador,” Energies, vol. 15, no. 5, p. 1776, Feb. 2022, https://doi.org/10.3390/en15051776
dc.relation/*ref*/M. Ur Rashid, I. Ullah, M. Mehran, M. N. R. Baharom, and F. Khan, “Techno-Economic Analysis of Grid-Connected Hybrid Renewable Energy System for Remote Areas Electrification Using Homer Pro,” Journal of Electrical Engineering & Technology, vol. 17, no. 2, pp. 981–997, Mar. 2022, https://doi.org/10.1007/s42835-021-00984-2
dc.relation/*ref*/P. Arévalo, A. A. Eras-Almeida, A. Cano, F. Jurado, and M. A. Egido-Aguilera, “Planning of electrical energy for the Galapagos Islands using different renewable energy technologies,” Electric Power Systems Research, vol. 203, p. 107660, Feb. 2022, https://doi.org/10.1016/j.epsr.2021.107660
dc.relation/*ref*/S. Vendoti, M. Muralidhar, and R. Kiranmayi, “Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software,” Environ Dev Sustain, vol. 23, no. 1, pp. 351–372, Jan. 2021, https://doi.org/10.1007/s10668-019-00583-2
dc.relation/*ref*/M. N. Uddin, M. M. Biswas, and S. Nuruddin, “Techno-economic impacts of floating PV power generation for remote coastal regions,” Sustainable Energy Technologies and Assessments, vol. 51, p. 101930, Jun. 2022, https://doi.org/10.1016/j.seta.2021.101930
dc.relation/*ref*/S. Ladide, A. EL Fathi, M. Bendaoud, H. Hihi, and K. Faitah, “Flexible design and assessment of a stand-alone hybrid renewable energy system: a case study Marrakech, Morocco,” International Journal of Renewable Energy Research, vol. 9, no. 4, pp. 2003–2022, Dec. 2019, https://doi.org/10.20508/ijrer.v9i4.9936.g7806
dc.relation/*ref*/S. Sreenath, A. M. Azmi, and Z. A. M. Ismail, “Feasibility of solar hybrid energy system at a conservation park: Technical, economic, environmental analysis,” Energy Reports, vol. 9, supplement 1, pp. 711–719, Mar. 2023, https://doi.org/10.1016/j.egyr.2022.11.065
dc.relation/*ref*/F. A. Barrozo Budes, G. Valencia Ochoa, L. G. Obregon, A. Arango-Manrique, and J. R. Núñez Álvarez, “Energy, Economic, and Environmental Evaluation of a Proposed Solar-Wind Power On-grid System Using HOMER Pro®: A Case Study in Colombia,” Energies , vol. 13, no. 7, p. 1662, Apr. 2020, https://doi.org/10.3390/en13071662
dc.relation/*ref*/D. Restrepo, B. Restrepo-Cuestas, and A. Trejos, “Microgrid analysis using HOMER: A case study,” DYNA (Colombia), vol. 85, no. 207, pp. 129–134, Oct. 2018, http://doi.org/10.15446/dyna.v85n207.69375
dc.relation/*ref*/A. F. Torres Ome, A. L. Paque Salazar, and F. Díaz Franco, “Arquitecturas híbridas para la evaluación económica de un sistema de energía eólico-solar a partir del análisis de las variables meteorológicas en la ciudad de Neiva,” Cina Research, vol. 2, no. 3, pp. 14–27, Jan. 2018. https://journals.uninavarra.edu.co/index.php/cinaresearch/article/view/134
dc.relation/*ref*/S. Ferahtia, H. Rezk, M. A. Abdelkareem, and A. G. Olabi, “Optimal techno-economic energy management strategy for building’s microgrids based bald eagle search optimization algorithm,” Applied Energy, vol. 306, pp. 118069, Jan. 2022, https://doi.org/10.1016/j.apenergy.2021.118069
dc.relation/*ref*/M. M. A. Seedahmed, M. A. M. Ramli, H. R. E. H. Bouchekara, M. S. Shahriar, A. H. Milyani, and M. Rawa, “A techno-economic analysis of a hybrid energy system for the electrification of a remote cluster in western Saudi Arabia,” Alexandria Engineering Journal, vol. 61, no. 7, pp. 5183–5202, Jul. 2022, https://doi.org/10.1016/j.aej.2021.10.041
dc.relation/*ref*/M. M. A. Seedahmed et al., “Optimal sizing of grid-connected photovoltaic system for a large commercial load in Saudi Arabia,” Alexandria Engineering Journal, vol. 61, no. 8, pp. 6523–6540, Aug. 2022, https://doi.org/10.1016/j.aej.2021.12.013
dc.relation/*ref*/S. Kumar, R. Sharma, S. Srinivasa Murthy, P. Dutta, W. He, and J. Wang, “Thermal analysis and optimization of stand-alone microgrids with metal hydride based hydrogen storage,” Sustainable Energy Technologies and Assessments, vol. 52, no. PA, p. 102043, Aug. 2022, https://doi.org/10.1016/j.seta.2022.102043
dc.relation/*ref*/H. Mohammadpourkarbasi and S. Sharples, “Appraising the life cycle costs of heating alternatives for an affordable low carbon retirement development,” Sustainable Energy Technologies and Assessments, vol. 49, Jul. 2021, p. 101693, Feb. 2022, https://doi.org/10.1016/j.seta.2021.101693
dc.relation/*ref*/D. A. Figueroa Guerra, J. F. Culqui Tipan, M. D. Núñez Verdezoto, and O. D. Cruz Panchi, “Modelamiento de un sistema fotovoltaico conectado a la red considerando la variación de irradiancia solar en Homer Pro,” Ingeniería Investigación y Desarrollo, vol. 22, no. 1, pp. 60–71, Jun. 2022, https://doi.org/10.19053/1900771X.v22.n1.2022.14456
dc.relation/*ref*/O. Tang, J. Rehme, and P. Cerin, “Levelized cost of hydrogen for refueling stations with solar PV and wind in Sweden: On-grid or off-grid?,” Energy, vol. 241, no. 3, p. 122906, Feb. 2022, https://doi.org/10.1016/j.energy.2021.122906
dc.relation/*ref*/C. Klemm and F. Wiese, “Indicators for the optimization of sustainable urban energy systems based on energy system modeling,” Energy Sustain Soc, vol. 12, no. 3, pp. 1–20, Jan. 2022, https://doi.org/10.1186/s13705-021-00323-3
dc.relation/*ref*/A. K. Podder et al., “Feasibility Assessment of Hybrid Solar Photovoltaic-Biogas Generator Based Charging Station: A Case of Easy Bike and Auto Rickshaw Scenario in a Developing Nation,” Sustainability, vol. 14, no. 1, p. 166, Dec. 2021, https://doi.org/10.3390/su14010166
dc.relation/*ref*/M. F. Ishraque et al., “Optimal Sizing and Assessment of a Renewable Rich Standalone Hybrid Microgrid Considering Conventional Dispatch Methodologies,” Sustainability, vol. 13, no. 22, p. 12734, Nov. 2021, https://doi.org/10.3390/su132212734
dc.relation/*ref*/A. al Wahedi and Y. Bicer, “Techno-economic optimization of novel stand-alone renewables-based electric vehicle charging stations in Qatar,” Energy, vol. 243, p. 123008, Mar. 2022, https://doi.org/10.1016/j.energy.2021.123008
dc.relation/*ref*/A. I. Omar, N. M. Khattab, and S. H. E. Abdel Aleem, “Optimal strategy for transition into net-zero energy in educational buildings: A case study in El-Shorouk City, Egypt,” Sustainable Energy Technologies and Assessments, vol. 49, p. 101701, Feb. 2022, https://doi.org/10.1016/j.seta.2021.101701
dc.relation/*ref*/M. S. Okundamiya, “Integration of photovoltaic and hydrogen fuel cell system for sustainable energy harvesting of a university ICT infrastructure with an irregular electric grid,” Energy Convers Manag, vol. 250, p. 114928, Dec. 2021, https://doi.org/10.1016/j.enconman.2021.114928
dc.relation/*ref*/N. Majdi Nasab, J. Kilby, and L. Bakhtiaryfard, “Case Study of a Hybrid Wind and Tidal Turbines System with a Microgrid for Power Supply to a Remote Off-Grid Community in New Zealand,” Energies, vol. 14, no. 12, p. 3636, Jun. 2021, https://doi.org/10.3390/en14123636
dc.relation/*ref*/C. Ghenai, T. Salameh, and A. Merabet, “Technico-economic analysis of off grid solar PV/Fuel cell energy system for residential community in desert region,” Int J Hydrogen Energy, vol. 45, no. 20, pp. 11460–11470, Apr. 2020, https://doi.org/10.1016/j.ijhydene.2018.05.110
dc.relation/*ref*/K. Rakhsia, M. Shezad, R. Yudhistira, N. Ruiz, A. Prasad, and G. Ropero, “Polygeneration System Design for Filipinas.” 2020. https://www.diva-portal.org/smash/get/diva2:1555554/FULLTEXT01.pdf
dc.relation/*ref*/M. Hunt and A. Benigni, “Sensitivity Analysis of Optimal Battery Sizing to Differences in Microgrid Use,” in 2019 International Conference on Clean Electrical Power (ICCEP), Jul. 2019, pp. 444–449. https://doi.org/10.1109/ICCEP.2019.8890179
dc.relation/*ref*/S. A. Luthfi, Novizon, and R. Fahreza, “Cost of Energy Sensitivity Analysis of PV/Diesel with Hydro Pumped Storage for Mentawai Microgrid System,” in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), Sep. 2021, pp. 1–5. https://doi.org/10.1109/GUCON50781.2021.9573985
dc.relation/*ref*/M. Nur Sabrina Noorpi, K. Meng, X. Li, Z. Yang Dong, and W. Kong, “Zonal Formation for Multiple Microgrids using Load Flow Sensitivity Analysis,” in 2018 International Conference on Power System Technology (POWERCON), Nov. 2018, pp. 358–363. https://doi.org/10.1109/POWERCON.2018.8601576
dc.relation/*ref*/P. Jagadeesh, M. Mohamed Thameem Ansari, and M. Saiveerraju, “Optimal Power Management of an Educational Institution Using HOMER,” Journal of Electrical Engineering and Technology, vol. 16, no. 4, pp. 1793–1798, Jul. 2021, https://doi.org/10.1007/s42835-021-00713-9
dc.relation/*ref*/M. A. A. Rahmat et al., “An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro,” Sustainability (Switzerland), vol. 14, no. 20, Oct. 2022, https://doi.org/10.3390/su142013684
dc.relation/*ref*/G. K. Suman, J. M. Guerrero, and O. P. Roy, “Optimisation of solar/wind/bio-generator/diesel/battery based microgrids for rural areas: A PSO-GWO approach,” Sustain Cities Soc, vol. 67, p. 102723, Apr. 2021, https://doi.org/10.1016/j.scs.2021.102723
dc.relation/*ref*/J. O. Oladigbolu, M. A. M. Ramli, and Y. A. Al-Turki, “Techno-Economic and Sensitivity Analyses for an Optimal Hybrid Power System Which Is Adaptable and Effective for Rural Electrification: A Case Study of Nigeria,” Sustainability, vol. 11, no. 18, p. 4959, Sep. 2019, https://doi.org/10.3390/su11184959
dc.relation/*ref*/M. H. Jahangir and R. Cheraghi, “Economic and environmental assessment of solar-wind-biomass hybrid renewable energy system supplying rural settlement load,” Sustainable Energy Technologies and Assessments, vol. 42, p. 100895, Dec. 2020, https://doi.org/10.1016/j.seta.2020.100895
dc.relation/*ref*/F. Eze, J. Ogola, R. Kivindu, M. Egbo, and C. Obi, “Technical and economic feasibility assessment of hybrid renewable energy system at Kenyan institutional building: A case study,” Sustainable Energy Technologies and Assessments, vol. 51, p. 101939, Jun. 2022, https://doi.org/10.1016/j.seta.2021.101939
dc.relation/*ref*/S. Sharma et al., “Modeling and sensitivity analysis of grid-connected hybrid green microgrid system,” Ain Shams Engineering Journal, vol. 13, no. 4, p. 101679, Jun. 2022, https://doi.org/10.1016/j.asej.2021.101679
dc.relation/*ref*/S. Sharma and Y. R. Sood, “Optimal planning and sensitivity analysis of green microgrid using various types of storage systems,” Wind Engineering, vol. 45, no. 4, pp. 939–952, Aug. 2021, https://doi.org/10.1177/0309524X20941475
dc.relation/*ref*/P. Malik, M. Awasthi, and S. Sinha, “Techno-economic and environmental analysis of biomass-based hybrid energy systems: A case study of a Western Himalayan state in India,” Sustainable Energy Technologies and Assessments, vol. 45, p. 101189, Jun. 2021, https://doi.org/10.1016/j.seta.2021.101189
dc.relation/*ref*/X. Yang, S. Liu, L. Zhang, J. Su, and T. Ye, “Design and analysis of a renewable energy power system for shale oil exploitation using hierarchical optimization,” Energy, vol. 206, p. 118078, Sep. 2020, https://doi.org/10.1016/j.energy.2020.118078
dc.relation/*ref*/A. Oulis Rousis, D. Tzelepis, I. Konstantelos, C. Booth, and G. Strbac, “Design of a Hybrid AC/DC Microgrid Using HOMER Pro: Case Study on an Islanded Residential Application,” Inventions, vol. 3, no. 3, p. 55, Aug. 2018, https://doi.org/10.3390/inventions3030055
dc.relation/*ref*/D. I. Papaioannou, C. N. Papadimitriou, A. L. Dimeas, E. I. Zountouridou, G. C. Kiokes, and N. D. Hatziargyriou, “Optimization & Sensitivity Analysis of Microgrids using HOMER software- A Case Study,” in MedPower 2014, pp. 1–7, Nov. 2014. https://doi.org/10.1049/cp.2014.1668
dc.relation/*ref*/V. V. V. S. N. Murty and A. Kumar, “Optimal Energy Management and Techno-economic Analysis in Microgrid with Hybrid Renewable Energy Sources,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 5, pp. 929–940, Sep. 2020, https://doi.org/10.35833/MPCE.2020.000273
dc.relation/*ref*/H. Masrur, H. O. R. Howlader, M. Elsayed Lotfy, K. R. Khan, J. M. Guerrero, and T. Senjyu, “Analysis of Techno-Economic-Environmental Suitability of an Isolated Microgrid System Located in a Remote Island of Bangladesh,” Sustainability, vol. 12, no. 7, p. 2880, Apr. 2020, https://doi.org/10.3390/su12072880
dc.relation/*ref*/T. Khan, M. Waseem, H. A. Muqeet, M. M. Hussain, M. Yu, and A. Annuk, “3E analyses of battery-assisted photovoltaic-fuel cell energy system: Step towards green community,” Energy Reports, vol. 8, pp. 184–191, Dec. 2022, https://doi.org/10.1016/j.egyr.2022.10.393
dc.relation/*ref*/I. W. Son, Y. Jeong, S. Son, J. H. Park, and J. I. Lee, “Techno-economic evaluation of solar-nuclear hybrid system for isolated grid,” Appl Energy, vol. 306, no. PA, p. 118046, Jan. 2022, https://doi.org/10.1016/j.apenergy.2021.118046
dc.relation/*ref*/R. Chaurasia, S. Gairola, and Y. Pal, “Technical, economic, and environmental performance comparison analysis of a hybrid renewable energy system based on power dispatch strategies,” Sustainable Energy Technologies and Assessments, vol. 53, no. PD, p. 102787, Oct. 2022, https://doi.org/10.1016/j.seta.2022.102787
dc.relation/*ref*/Congreso de la República de Colombia, “Ley 1715 del 13 de mayo de 2014,” 2014. http://www.upme.gov.co/normatividad/nacional/2014/ley_1715_2014.pdf
dc.relation/*ref*/Congreso de la República de Colombia, “Ley 2099 del 10 de julio de 2021,” 2021. https://dapre.presidencia.gov.co/normativa/normativa/LEY
dc.relation/*ref*/HOMER Pro, “HOMER Pro - Microgrid Software for Designing Optimized Hybrid Microgrids,”, 2022. https://www.homerenergy.com/products/pro/index.html (accessed Jan. 26, 2023).
dc.relation/*ref*/IDEAM, “Atlas Interactivo - Radiación IDEAM.”, Accessed: Sep. 27, 2022. http://atlas.ideam.gov.co/visorAtlasRadiacion.html
dc.relation/*ref*/IDEAM, “Atlas Interactivo - Vientos - IDEAM.”, (accessed Sep. 27, 2022). http://atlas.ideam.gov.co/visorAtlasVientos.html
dc.relation/*ref*/A. Singh, P. Baredar, and B. Gupta, “Computational Simulation & Optimization of a Solar, Fuel Cell and Biomass Hybrid Energy System Using HOMER Pro Software,” Procedia Eng, vol. 127, pp. 743–750, 2015, https://doi.org/10.1016/j.proeng.2015.11.408
dc.relation/*ref*/M. Nurunnabi, N. K. Roy, E. Hossain, and H. R. Pota, “Size Optimization and Sensitivity Analysis of Hybrid Wind/PV Micro-Grids- A Case Study for Bangladesh,” IEEE Access, vol. 7, pp. 150120–150140, Oct. 2019, https://doi.org/10.1109/ACCESS.2019.2945937
dc.relation/*ref*/J. R. Baral, S. R. Behera, and T. Kisku, “Design and Economic Optimization of Community Load Based Microgrid System Using HOMER Pro,” in 2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP), Jul. 2022, pp. 1–5. https://doi.org/10.1109/ICICCSP53532.2022.9862479
dc.relation/*ref*/M. Mehdi, N. Ammari, A. Alami Merrouni, H. El Gallassi, M. Dahmani, and A. Ghennioui, “An experimental comparative analysis of different PV technologies performance including the influence of hot-arid climatic parameters: Toward a realistic yield assessment for desert locations,” Renewable Energy, vol. 205, pp. 695–716, Mar. 2023, https://doi.org/10.1016/j.renene.2023.01.082
dc.relation/*ref*/C. E. Tello-Argüelles, M. J. Espinosa-Trujillo, D. M. Medina Carril, “Evaluación del efecto de la radiación solar sobre la superficie de un sistema fotovoltaico,” in, ECORFAN, 2020, pp. 196–209. https://doi.org/10.35429/H.2020.5.196.209
dc.relation/*ref*/S. A. Sadat, J. Faraji, M. Babaei, and A. Ketabi, “Techno‐economic comparative study of hybrid microgrids in eight climate zones of Iran,” Energy Sci Eng, vol. 8, no. 9, pp. 3004–3026, Sep. 2020, https://doi.org/10.1002/ese3.720
dc.relation/*ref*/
dc.rightsDerechos de autor 2022 TecnoLógicases-ES
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0es-ES
dc.sourceTecnoLógicas; Vol. 26 No. 56 (2023); e2565en-US
dc.sourceTecnoLógicas; Vol. 26 Núm. 56 (2023); e2565es-ES
dc.source2256-5337
dc.source0123-7799
dc.subjectSensitivity analysisen-US
dc.subjectHOMER Proen-US
dc.subjectEconomic indicatorsen-US
dc.subjectTechnical indicatorsen-US
dc.subjectStand-alone microgriden-US
dc.subjectSizing procedureen-US
dc.subjectAnálisis de sensibilidades-ES
dc.subjectHOMER Proes-ES
dc.subjectIndicadores económicoses-ES
dc.subjectIndicadores técnicoses-ES
dc.subjectMicrorred aisladaes-ES
dc.subjectProcedimiento de dimensionamientoes-ES
dc.titleSizing and Sensitivity Analysis of a Stand-alone Microgrid Using HOMER Proen-US
dc.titleDimensionamiento y análisis de sensibilidad de una microrred aislada usando HOMER Proes-ES
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeResearch Papersen-US
dc.typeArtículos de investigaciónes-ES

Archivos

Bloque original

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
2565-MPU-VF.pdf
Tamaño:
1.12 MB
Formato:
Adobe Portable Document Format
Cargando...
Miniatura
Nombre:
344273557008_1.epub
Tamaño:
3.91 MB
Formato:
Electronic publishing
Cargando...
Miniatura
Nombre:
344273557008.xml
Tamaño:
254.65 KB
Formato:
Extensible Markup Language
Cargando...
Miniatura
Nombre:
2811.html
Tamaño:
302.02 KB
Formato:
Hypertext Markup Language