• Communities & Collections
    • By Issue Date
    • Authors
    • Advisor
    • Titles
    • Subjects
    • Document type
    • español
    • English
    • português (Brasil)
  • Self archiving
  • Browse 
    • Communities & Collections
    • By Issue Date
    • Authors
    • Advisor
    • Titles
    • Subjects
    • Document type
  • English 
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional repository ITM
  • Revistas
  • Revistas Científicas
  • TecnoLógicas
  • Num. 31 (2013)
  • View Item
  •   Institutional repository ITM
  • Revistas
  • Revistas Científicas
  • TecnoLógicas
  • Num. 31 (2013)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of ITMCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsDocument typeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsDocument type

My Account

LoginRegister

Statistics

View Usage Statistics
Statistics GTMView statistics GTM

Detección de eventos sonoros en señales de música usando procesos Gaussianos

Thumbnail
View/Open
108-Manuscrito-198-1-10-20170208.pdf (703.0Kb) 
QRCode
Share this
Detección de eventos sonoros en señales de música usando procesos Gaussianos
Date
2011-11-30
Author
Alvarado-Durán, Pablo A.
Álvarez-López, Mauricio A.
Orozco-Gutiérrez, Álvaro A.
Publisher
Instituto Tecnológico Metropolitano (ITM)

Citation

       
TY - GEN T1 - Detección de eventos sonoros en señales de música usando procesos Gaussianos AU - Alvarado-Durán, Pablo A. AU - Álvarez-López, Mauricio A. AU - Orozco-Gutiérrez, Álvaro A. Y1 - 2011-11-30 UR - http://hdl.handle.net/20.500.12622/918 AB - En este artículo se propone una metodología para detectar eventos sonoros en señales de música usando procesos Gaussianos. En el algoritmo presentado, las señales de audio de entrada son transformadas a un espacio tiempo-frecuencia utilizando la Transformada de Tiempo Corto de Fourier para obtener el espectrograma, cuya dimensión es posteriormente reducida pasando de la frecuencia en escala lineal en Hertz a la escala logarítmica en Mel por medio de un banco de filtros triangulares. Finalmente, se clasifica entre “evento” y “no evento” cada uno de los espectros de tiempo corto contenidos en el espectrograma en escala Mel por medio de un clasificador binario basado en procesos Gaussianos. Como parte del proceso de evaluación, se compara el desempeño de la metodología propuesta con el desempeño de algunas técnicas ampliamente utilizadas para detectar eventos en este tipo de señales. Para tal fin, se implementa en MATLAB® cada una de estas técnicas y se ponen a prueba utilizando dos bases de datos compuestas por segmentos de audio de diferente complejidad; definida por el tipo y cantidad de instrumentos tocados al mismo tiempo. Los resultados indican que la metodología propuesta supera el desempeño de las técnicas hasta ahora planteadas, presentando un mejoramiento en la medida F de 1,66 % para la base de datos uno y de 0,45 % para la base de datos dos.  ER - @misc{20.500.12622_918, author = {Alvarado-Durán Pablo A. and Álvarez-López Mauricio A. and Orozco-Gutiérrez Álvaro A.}, title = {Detección de eventos sonoros en señales de música usando procesos Gaussianos}, year = {2011-11-30}, abstract = {En este artículo se propone una metodología para detectar eventos sonoros en señales de música usando procesos Gaussianos. En el algoritmo presentado, las señales de audio de entrada son transformadas a un espacio tiempo-frecuencia utilizando la Transformada de Tiempo Corto de Fourier para obtener el espectrograma, cuya dimensión es posteriormente reducida pasando de la frecuencia en escala lineal en Hertz a la escala logarítmica en Mel por medio de un banco de filtros triangulares. Finalmente, se clasifica entre “evento” y “no evento” cada uno de los espectros de tiempo corto contenidos en el espectrograma en escala Mel por medio de un clasificador binario basado en procesos Gaussianos. Como parte del proceso de evaluación, se compara el desempeño de la metodología propuesta con el desempeño de algunas técnicas ampliamente utilizadas para detectar eventos en este tipo de señales. Para tal fin, se implementa en MATLAB® cada una de estas técnicas y se ponen a prueba utilizando dos bases de datos compuestas por segmentos de audio de diferente complejidad; definida por el tipo y cantidad de instrumentos tocados al mismo tiempo. Los resultados indican que la metodología propuesta supera el desempeño de las técnicas hasta ahora planteadas, presentando un mejoramiento en la medida F de 1,66 % para la base de datos uno y de 0,45 % para la base de datos dos. }, url = {http://hdl.handle.net/20.500.12622/918} }RT Generic T1 Detección de eventos sonoros en señales de música usando procesos Gaussianos A1 Alvarado-Durán, Pablo A. A1 Álvarez-López, Mauricio A. A1 Orozco-Gutiérrez, Álvaro A. YR 2011-11-30 LK http://hdl.handle.net/20.500.12622/918 AB En este artículo se propone una metodología para detectar eventos sonoros en señales de música usando procesos Gaussianos. En el algoritmo presentado, las señales de audio de entrada son transformadas a un espacio tiempo-frecuencia utilizando la Transformada de Tiempo Corto de Fourier para obtener el espectrograma, cuya dimensión es posteriormente reducida pasando de la frecuencia en escala lineal en Hertz a la escala logarítmica en Mel por medio de un banco de filtros triangulares. Finalmente, se clasifica entre “evento” y “no evento” cada uno de los espectros de tiempo corto contenidos en el espectrograma en escala Mel por medio de un clasificador binario basado en procesos Gaussianos. Como parte del proceso de evaluación, se compara el desempeño de la metodología propuesta con el desempeño de algunas técnicas ampliamente utilizadas para detectar eventos en este tipo de señales. Para tal fin, se implementa en MATLAB® cada una de estas técnicas y se ponen a prueba utilizando dos bases de datos compuestas por segmentos de audio de diferente complejidad; definida por el tipo y cantidad de instrumentos tocados al mismo tiempo. Los resultados indican que la metodología propuesta supera el desempeño de las técnicas hasta ahora planteadas, presentando un mejoramiento en la medida F de 1,66 % para la base de datos uno y de 0,45 % para la base de datos dos.  OL Spanish (121)
Bibliographic managers
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
PDF Documents
Abstract
En este artículo se propone una metodología para detectar eventos sonoros en señales de música usando procesos Gaussianos. En el algoritmo presentado, las señales de audio de entrada son transformadas a un espacio tiempo-frecuencia utilizando la Transformada de Tiempo Corto de Fourier para obtener el espectrograma, cuya dimensión es posteriormente reducida pasando de la frecuencia en escala lineal en Hertz a la escala logarítmica en Mel por medio de un banco de filtros triangulares. Finalmente, se clasifica entre “evento” y “no evento” cada uno de los espectros de tiempo corto contenidos en el espectrograma en escala Mel por medio de un clasificador binario basado en procesos Gaussianos. Como parte del proceso de evaluación, se compara el desempeño de la metodología propuesta con el desempeño de algunas técnicas ampliamente utilizadas para detectar eventos en este tipo de señales. Para tal fin, se implementa en MATLAB® cada una de estas técnicas y se ponen a prueba utilizando dos bases de datos compuestas por segmentos de audio de diferente complejidad; definida por el tipo y cantidad de instrumentos tocados al mismo tiempo. Los resultados indican que la metodología propuesta supera el desempeño de las técnicas hasta ahora planteadas, presentando un mejoramiento en la medida F de 1,66 % para la base de datos uno y de 0,45 % para la base de datos dos. 
Abstract
In this paper we present a new methodology for detecting sound events in music signals using Gaussian Processes. Our method firstly takes a time-frequency representation, i.e. the spectrogram, of the input audio signal. Secondly the spectrogram dimension is reduced translating the linear Hertz frequency scale into the logarithmic Mel frequency scale using a triangular filter bank. Finally every short-time spectrum, i.e. every Mel spectrogram column, is classified as “Event” or “Not Event” by a Gaussian Processes Classifier. We compare our method with other event detection techniques widely used. To do so, we use MATLAB® to program each technique and test them using two datasets of music with different levels of complexity. Results show that the new methodology outperforms the standard approaches, getting an improvement by about 1.66 % on the dataset one and 0.45 % on the dataset two in terms of F-measure.
Palabras clave
Clasificación con procesos Gaussianos; aprendizaje de máquina supervisado; espectrograma; detección de eventos; señales de música.
keywords
Gaussian processes classification; supervised machine learning; spectrogram; event detection; music signals.
URI
http://hdl.handle.net/20.500.12622/918
Collections
  • Num. 31 (2013) [12]

Departamento de Biblioteca y Extensión Cultural
bibliotecaitm@itm.edu.co

Contact Us | Send Feedback