Publicación: Clasificador difuso para diagnóstico de enfermedades
Portada
Citas bibliográficas
Código QR
Autor corporativo
Recolector de datos
Otros/Desconocido
Director audiovisual
Editor
Fecha
Citación
Título de serie/ reporte/ volumen/ colección
Es Parte de
Resumen en español
En este artículo se presenta la aplicación de un nuevo método de identificación difusa para resolver problemas de clasificación. El modelo o clasificador difuso obtenido después del proceso de entrenamiento, contiene conjuntos triangulares con solapamiento de 0.5 para el antecedente y conjuntos tipo singleton para el consecuente. En la evaluación de las reglas se emplea un operador promedio en vez de una T-norma. Los consecuentes son ajustados empleando mínimos cuadrados recursivos. El método propuesto consigue una mayor precisión que la alcanzada con los métodos actuales existentes, empleando un número reducido de reglas y parámetros, sin sacrificar la interpretabilidad del modelo difuso. El enfoque propuesto es aplicado a dos problemas clásicos de clasificación: el Pima Indian Diabetic y el Dermatology Problem, para mostrar el desempeño del método propuesto y comparar los resultados con los alcanzados por otros investigadores.