• Communities & Collections
    • By Issue Date
    • Authors
    • Advisor
    • Titles
    • Subjects
    • Document type
    • español
    • English
    • português (Brasil)
  • Self archiving
  • Browse 
    • Communities & Collections
    • By Issue Date
    • Authors
    • Advisor
    • Titles
    • Subjects
    • Document type
  • English 
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional repository ITM
  • Revistas
  • Revistas Científicas
  • TecnoLógicas
  • Vol. 23 Núm. 49 (2020)
  • View Item
  •   Institutional repository ITM
  • Revistas
  • Revistas Científicas
  • TecnoLógicas
  • Vol. 23 Núm. 49 (2020)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of ITMCommunities & CollectionsBy Issue DateAuthorsAdvisorTitlesSubjectsDocument typeThis CollectionBy Issue DateAuthorsAdvisorTitlesSubjectsDocument type

My Account

LoginRegister

Statistics

View Usage Statistics
Statistics GTMView statistics GTM

Spatio-Temporal Projection of Covid-19 in Pereira

Thumbnail
QRCode
Share this
Spatio-Temporal Projection of Covid-19 in Pereira
Date
2020-09-15
Author
Granada-Echeverri, Mauricio
Molina-Cabrera, Alexander
Granada-Echeverri, Patricia
Publisher
Instituto Tecnológico Metropolitano - ITM

Citation

       
TY - GEN T1 - Spatio-Temporal Projection of Covid-19 in Pereira AU - Granada-Echeverri, Mauricio AU - Molina-Cabrera, Alexander AU - Granada-Echeverri, Patricia Y1 - 2020-09-15 UR - http://hdl.handle.net/20.500.12622/4632 AB - El brote actual de la enfermedad por coronavirus (COVID-19), que se informó por primera vez en Wuhan, China, el 31 de diciembre de 2019, ha dejado un saldo al 19 de abril de 2020 de más de 3500000 infectados y 160000 muertes en 185 países. En este trabajo utilizamos un modelo basado en el Método de Cadena Microscópica de Markov (MCMM, Markov Microscopic Chain Approach) para estimar la propagación del COVID-19 en la ciudad de Pereira (Risaralda-Colombia). Este modelo incorpora importantes aspectos de la población, relacionados con: ubicación espacial dentro de la ciudad discretizada por comunas, movilidad entre comunas, estratificación por grupos de edad y separación de individuos en siete compartimientos epidemiológicos. Este modelo se utiliza para predecir, en una línea de tiempo, la incidencia de epidemias en poblaciones geolocalizadas, lo que se traduce en una herramienta indicadora para tomar medidas de control. Así, el resultado de la metodología caracteriza la evolución en el tiempo y el espacio de la proporción de los individuos en cada uno de los compartimientos epidemiológicos y en cada grupo etario. Los datos que se refieren a COVID-19, desde la municipalidad de Pereira, hasta el 20 de abril de 2020, se utilizan para alimentar el modelo y obtener las proyecciones espacio-temporales. Los resultados presentados consideran múltiples escenarios de movilidad, de forma que el aplanamiento de las curvas de los diferentes compartimientos epidemiológicos pueda ser visualizados de acuerdo a diferentes estrategias de confinamiento. Por tratarse de un modelo espacio-temporal, los resultados del modelo pueden ser presentados fácilmente como mapas de calor sobre cada uno de los compartimientos epidemiológicos, a fin de facilitar los procesos de toma de decisiones. ER - @misc{20.500.12622_4632, author = {Granada-Echeverri Mauricio and Molina-Cabrera Alexander and Granada-Echeverri Patricia}, title = {Spatio-Temporal Projection of Covid-19 in Pereira}, year = {2020-09-15}, abstract = {El brote actual de la enfermedad por coronavirus (COVID-19), que se informó por primera vez en Wuhan, China, el 31 de diciembre de 2019, ha dejado un saldo al 19 de abril de 2020 de más de 3500000 infectados y 160000 muertes en 185 países. En este trabajo utilizamos un modelo basado en el Método de Cadena Microscópica de Markov (MCMM, Markov Microscopic Chain Approach) para estimar la propagación del COVID-19 en la ciudad de Pereira (Risaralda-Colombia). Este modelo incorpora importantes aspectos de la población, relacionados con: ubicación espacial dentro de la ciudad discretizada por comunas, movilidad entre comunas, estratificación por grupos de edad y separación de individuos en siete compartimientos epidemiológicos. Este modelo se utiliza para predecir, en una línea de tiempo, la incidencia de epidemias en poblaciones geolocalizadas, lo que se traduce en una herramienta indicadora para tomar medidas de control. Así, el resultado de la metodología caracteriza la evolución en el tiempo y el espacio de la proporción de los individuos en cada uno de los compartimientos epidemiológicos y en cada grupo etario. Los datos que se refieren a COVID-19, desde la municipalidad de Pereira, hasta el 20 de abril de 2020, se utilizan para alimentar el modelo y obtener las proyecciones espacio-temporales. Los resultados presentados consideran múltiples escenarios de movilidad, de forma que el aplanamiento de las curvas de los diferentes compartimientos epidemiológicos pueda ser visualizados de acuerdo a diferentes estrategias de confinamiento. Por tratarse de un modelo espacio-temporal, los resultados del modelo pueden ser presentados fácilmente como mapas de calor sobre cada uno de los compartimientos epidemiológicos, a fin de facilitar los procesos de toma de decisiones.}, url = {http://hdl.handle.net/20.500.12622/4632} }RT Generic T1 Spatio-Temporal Projection of Covid-19 in Pereira A1 Granada-Echeverri, Mauricio A1 Molina-Cabrera, Alexander A1 Granada-Echeverri, Patricia YR 2020-09-15 LK http://hdl.handle.net/20.500.12622/4632 AB El brote actual de la enfermedad por coronavirus (COVID-19), que se informó por primera vez en Wuhan, China, el 31 de diciembre de 2019, ha dejado un saldo al 19 de abril de 2020 de más de 3500000 infectados y 160000 muertes en 185 países. En este trabajo utilizamos un modelo basado en el Método de Cadena Microscópica de Markov (MCMM, Markov Microscopic Chain Approach) para estimar la propagación del COVID-19 en la ciudad de Pereira (Risaralda-Colombia). Este modelo incorpora importantes aspectos de la población, relacionados con: ubicación espacial dentro de la ciudad discretizada por comunas, movilidad entre comunas, estratificación por grupos de edad y separación de individuos en siete compartimientos epidemiológicos. Este modelo se utiliza para predecir, en una línea de tiempo, la incidencia de epidemias en poblaciones geolocalizadas, lo que se traduce en una herramienta indicadora para tomar medidas de control. Así, el resultado de la metodología caracteriza la evolución en el tiempo y el espacio de la proporción de los individuos en cada uno de los compartimientos epidemiológicos y en cada grupo etario. Los datos que se refieren a COVID-19, desde la municipalidad de Pereira, hasta el 20 de abril de 2020, se utilizan para alimentar el modelo y obtener las proyecciones espacio-temporales. Los resultados presentados consideran múltiples escenarios de movilidad, de forma que el aplanamiento de las curvas de los diferentes compartimientos epidemiológicos pueda ser visualizados de acuerdo a diferentes estrategias de confinamiento. Por tratarse de un modelo espacio-temporal, los resultados del modelo pueden ser presentados fácilmente como mapas de calor sobre cada uno de los compartimientos epidemiológicos, a fin de facilitar los procesos de toma de decisiones. OL Spanish (121)
Bibliographic managers
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
Abstract
El brote actual de la enfermedad por coronavirus (COVID-19), que se informó por primera vez en Wuhan, China, el 31 de diciembre de 2019, ha dejado un saldo al 19 de abril de 2020 de más de 3500000 infectados y 160000 muertes en 185 países. En este trabajo utilizamos un modelo basado en el Método de Cadena Microscópica de Markov (MCMM, Markov Microscopic Chain Approach) para estimar la propagación del COVID-19 en la ciudad de Pereira (Risaralda-Colombia). Este modelo incorpora importantes aspectos de la población, relacionados con: ubicación espacial dentro de la ciudad discretizada por comunas, movilidad entre comunas, estratificación por grupos de edad y separación de individuos en siete compartimientos epidemiológicos. Este modelo se utiliza para predecir, en una línea de tiempo, la incidencia de epidemias en poblaciones geolocalizadas, lo que se traduce en una herramienta indicadora para tomar medidas de control. Así, el resultado de la metodología caracteriza la evolución en el tiempo y el espacio de la proporción de los individuos en cada uno de los compartimientos epidemiológicos y en cada grupo etario. Los datos que se refieren a COVID-19, desde la municipalidad de Pereira, hasta el 20 de abril de 2020, se utilizan para alimentar el modelo y obtener las proyecciones espacio-temporales. Los resultados presentados consideran múltiples escenarios de movilidad, de forma que el aplanamiento de las curvas de los diferentes compartimientos epidemiológicos pueda ser visualizados de acuerdo a diferentes estrategias de confinamiento. Por tratarse de un modelo espacio-temporal, los resultados del modelo pueden ser presentados fácilmente como mapas de calor sobre cada uno de los compartimientos epidemiológicos, a fin de facilitar los procesos de toma de decisiones.
Abstract
The current outbreak of coronavirus disease (COVID-19), which was first reported in Wuhan, China on December 31, 2019, has left a balance as of April 19, 2020 of more than 3500000 infected and 160000 deaths in 185 countries. In this work we use a model based on the Markov Microscopic Chain Approach (MMCA) to estimate the spread of COVID-19 in the city of Pereira (Risaralda-Colombia). This model incorporates important aspects of the population related to spatial location within the city which is discretized by communes, mobility between communes, stratification by age groups and separation of individuals into seven epidemiological compartments. This model is used to predict, in a timeline, the incidence of epidemics in geolocated populations, which translates into an indicator tool to take control measures. The data referring to COVID-19, from the municipality of Pereira, until April 20, 2020 are used to feed the model and obtain the spatio-temporal projections. The results presented consider multiple mobility scenarios, so that the flattening of the curves of the different epidemiological compartments can be visualized according to different confinement strategies. As it is a spatio-temporal model, the results of the model can easily be presented as heat over each of the epidemiological compartments, in order to facilitate decision-making processes.
Palabras clave
Proyección espacio-temporal; propagación del COVID-19; Método de Cadena Microscópica de Markov; mapas de calor; Coronavirus
keywords
Spatio-temporal projection; spread of COVID-19; Markov Microscopic Chain Approach; heat maps; Coronavirus
URI
http://hdl.handle.net/20.500.12622/4632
Collections
  • Vol. 23 Núm. 49 (2020) [14]

Departamento de Biblioteca y Extensión Cultural
bibliotecaitm@itm.edu.co

Contact Us | Send Feedback