• Communities & Collections
    • By Issue Date
    • Authors
    • Titles
    • Subjects
    • Document type
    • español
    • English
    • português (Brasil)
  • Self archiving
  • Browse 
    • Communities & Collections
    • By Issue Date
    • Authors
    • Titles
    • Subjects
    • Document type
  • English 
    • español
    • English
    • português (Brasil)
  • Login
View Item 
  •   Institutional repository ITM
  • Revistas
  • Revista Divulgación Científica
  • TecnoLógicas
  • Vol 22 No 46 (2019)
  • View Item
  •   Institutional repository ITM
  • Revistas
  • Revista Divulgación Científica
  • TecnoLógicas
  • Vol 22 No 46 (2019)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Browse

All of ITMCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument typeThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument type

My Account

LoginRegister

Statistics

View Usage Statistics
Statistics GTMView statistics GTM

Agrupación de Subespacios Escasos en Imágenes Hiperespectrales usando Pixeles incompletos

Thumbnail
View/Open
Rep_Itm_CEA.pdf (1.427Mb) 
QRCode
Share this
Agrupación de Subespacios Escasos en Imágenes Hiperespectrales usando Pixeles incompletos
Date
2019-09-20
Author
Bacca, Jorge Luis
Arguello, Henry

Citation

       
TY - GEN T1 - Agrupación de Subespacios Escasos en Imágenes Hiperespectrales usando Pixeles incompletos AU - Bacca, Jorge Luis AU - Arguello, Henry Y1 - 2019-09-20 UR - http://hdl.handle.net/20.500.12622/1423 AB - El agrupamiento de imágenes espectrales es un método de clasificación no supervisada que identifica las distribuciones de píxeles utilizando información espectral sin necesidad de una etapa previa de entrenamiento. Los métodos basados ​​en agrupación de subespacio escasos (SSC) suponen que las imágenes hiperespectrales viven en la unión de múltiples subespacios de baja dimensión. Basado en esto, SSC asigna firmas espectrales a diferentes subespacios, expresando cada firma espectral como una combinación lineal escasa de todos los píxeles, garantizando que los elementos que no son cero pertenecen a la misma clase. Aunque estos métodos han demostrado una buena precisión para la clasificación no supervisada de imágenes hiperespectrales, a medida que aumenta el número de píxeles, es decir, la dimensión de la imagen es grande, la complejidad computacional se vuelve intratable. Por este motivo, este documento propone reducir el número de píxeles a clasificar en la imagen hiperespectral, y posteriormente, los resultados del agrupamiento para los píxeles faltantes se obtienen explotando la información espacial. Específicamente, este trabajo propone dos metodologías para remover los píxeles, la primera se basa en una distribución espacial de ruido azul que reduce la probabilidad de que se eliminen píxeles vecinos y la segunda es un procedimiento de submuestreo que elimina cada dos píxeles contiguos, preservando la estructura espacial de la escena. El rendimiento del algoritmo de agrupamiento de imágenes espectrales propuesto se evalúa en tres conjuntos de datos mostrando que se obtiene una precisión similar cuando se elimina hasta la mitad de los pixeles, además, es hasta 7.9 veces más rápido en comparación con la clasificación de los conjuntos de datos completos. ER - @misc{20.500.12622_1423, author = {Bacca Jorge Luis and Arguello Henry}, title = {Agrupación de Subespacios Escasos en Imágenes Hiperespectrales usando Pixeles incompletos}, year = {2019-09-20}, abstract = {El agrupamiento de imágenes espectrales es un método de clasificación no supervisada que identifica las distribuciones de píxeles utilizando información espectral sin necesidad de una etapa previa de entrenamiento. Los métodos basados ​​en agrupación de subespacio escasos (SSC) suponen que las imágenes hiperespectrales viven en la unión de múltiples subespacios de baja dimensión. Basado en esto, SSC asigna firmas espectrales a diferentes subespacios, expresando cada firma espectral como una combinación lineal escasa de todos los píxeles, garantizando que los elementos que no son cero pertenecen a la misma clase. Aunque estos métodos han demostrado una buena precisión para la clasificación no supervisada de imágenes hiperespectrales, a medida que aumenta el número de píxeles, es decir, la dimensión de la imagen es grande, la complejidad computacional se vuelve intratable. Por este motivo, este documento propone reducir el número de píxeles a clasificar en la imagen hiperespectral, y posteriormente, los resultados del agrupamiento para los píxeles faltantes se obtienen explotando la información espacial. Específicamente, este trabajo propone dos metodologías para remover los píxeles, la primera se basa en una distribución espacial de ruido azul que reduce la probabilidad de que se eliminen píxeles vecinos y la segunda es un procedimiento de submuestreo que elimina cada dos píxeles contiguos, preservando la estructura espacial de la escena. El rendimiento del algoritmo de agrupamiento de imágenes espectrales propuesto se evalúa en tres conjuntos de datos mostrando que se obtiene una precisión similar cuando se elimina hasta la mitad de los pixeles, además, es hasta 7.9 veces más rápido en comparación con la clasificación de los conjuntos de datos completos.}, url = {http://hdl.handle.net/20.500.12622/1423} }RT Generic T1 Agrupación de Subespacios Escasos en Imágenes Hiperespectrales usando Pixeles incompletos A1 Bacca, Jorge Luis A1 Arguello, Henry YR 2019-09-20 LK http://hdl.handle.net/20.500.12622/1423 AB El agrupamiento de imágenes espectrales es un método de clasificación no supervisada que identifica las distribuciones de píxeles utilizando información espectral sin necesidad de una etapa previa de entrenamiento. Los métodos basados ​​en agrupación de subespacio escasos (SSC) suponen que las imágenes hiperespectrales viven en la unión de múltiples subespacios de baja dimensión. Basado en esto, SSC asigna firmas espectrales a diferentes subespacios, expresando cada firma espectral como una combinación lineal escasa de todos los píxeles, garantizando que los elementos que no son cero pertenecen a la misma clase. Aunque estos métodos han demostrado una buena precisión para la clasificación no supervisada de imágenes hiperespectrales, a medida que aumenta el número de píxeles, es decir, la dimensión de la imagen es grande, la complejidad computacional se vuelve intratable. Por este motivo, este documento propone reducir el número de píxeles a clasificar en la imagen hiperespectral, y posteriormente, los resultados del agrupamiento para los píxeles faltantes se obtienen explotando la información espacial. Específicamente, este trabajo propone dos metodologías para remover los píxeles, la primera se basa en una distribución espacial de ruido azul que reduce la probabilidad de que se eliminen píxeles vecinos y la segunda es un procedimiento de submuestreo que elimina cada dos píxeles contiguos, preservando la estructura espacial de la escena. El rendimiento del algoritmo de agrupamiento de imágenes espectrales propuesto se evalúa en tres conjuntos de datos mostrando que se obtiene una precisión similar cuando se elimina hasta la mitad de los pixeles, además, es hasta 7.9 veces más rápido en comparación con la clasificación de los conjuntos de datos completos. OL Spanish (121)
Bibliographic managers
Refworks
Zotero
BibTeX
CiteULike
Metadata
Show full item record
PDF Documents
Abstract
El agrupamiento de imágenes espectrales es un método de clasificación no supervisada que identifica las distribuciones de píxeles utilizando información espectral sin necesidad de una etapa previa de entrenamiento. Los métodos basados ​​en agrupación de subespacio escasos (SSC) suponen que las imágenes hiperespectrales viven en la unión de múltiples subespacios de baja dimensión. Basado en esto, SSC asigna firmas espectrales a diferentes subespacios, expresando cada firma espectral como una combinación lineal escasa de todos los píxeles, garantizando que los elementos que no son cero pertenecen a la misma clase. Aunque estos métodos han demostrado una buena precisión para la clasificación no supervisada de imágenes hiperespectrales, a medida que aumenta el número de píxeles, es decir, la dimensión de la imagen es grande, la complejidad computacional se vuelve intratable. Por este motivo, este documento propone reducir el número de píxeles a clasificar en la imagen hiperespectral, y posteriormente, los resultados del agrupamiento para los píxeles faltantes se obtienen explotando la información espacial. Específicamente, este trabajo propone dos metodologías para remover los píxeles, la primera se basa en una distribución espacial de ruido azul que reduce la probabilidad de que se eliminen píxeles vecinos y la segunda es un procedimiento de submuestreo que elimina cada dos píxeles contiguos, preservando la estructura espacial de la escena. El rendimiento del algoritmo de agrupamiento de imágenes espectrales propuesto se evalúa en tres conjuntos de datos mostrando que se obtiene una precisión similar cuando se elimina hasta la mitad de los pixeles, además, es hasta 7.9 veces más rápido en comparación con la clasificación de los conjuntos de datos completos.
Abstract
Spectral image clustering is an unsupervised classification method which identifies distributions of pixels using spectral information without requiring a previous training stage. The sparse subspace clustering-based methods (SSC) assume that hyperspectral images lie in the union of multiple low-dimensional subspaces.  Using this, SSC groups spectral signatures in different subspaces, expressing each spectral signature as a sparse linear combination of all pixels, ensuring that the non-zero elements belong to the same class. Although these methods have shown good accuracy for unsupervised classification of hyperspectral images, the computational complexity becomes intractable as the number of pixels increases, i.e. when the spatial dimension of the image is large. For this reason, this paper proposes to reduce the number of pixels to be classified in the hyperspectral image, and later, the clustering results for the missing pixels are obtained by exploiting the spatial information. Specifically, this work proposes two methodologies to remove the pixels, the first one is based on spatial blue noise distribution which reduces the probability to remove cluster of neighboring pixels, and the second is a sub-sampling procedure that eliminates every two contiguous pixels, preserving the spatial structure of the scene. The performance of the proposed spectral image clustering framework is evaluated in three datasets showing that a similar accuracy is obtained when up to 50% of the pixels are removed, in addition, it is up to 7.9 times faster compared to the classification of the data sets without incomplete pixels.
Palabras clave
Imágenes hiperespectrales; Agrupación espectral; Agrupación de subespacios escasos; Submuestreo; clasificación de imágenes
keywords
Spectral images; Spectral clustering; Sparse subspace clustering; Sub-sampling; image classification
URI
http://hdl.handle.net/20.500.12622/1423
Statistics Google Analytics
Collections
  • Vol 22 No 46 (2019) [15]

Departamento de Biblioteca y Extensión Cultural
bibliotecaitm@itm.edu.co

Contact Us | Send Feedback